K230 nncase开发指南

目录

K230 nncase开发指南#

1. 概述#

1.1 什么是nncase#

nncase是一个为 AI 加速器设计的神经网络编译器, 目前支持的 target有CPU/K210/K510/K230等。

nncase提供的功能:

  • 支持多输入多输出网络,支持多分支结构

  • 静态内存分配,不需要堆内存

  • 算子合并和优化

  • 支持 float 和uint8/int8量化推理

  • 支持训练后量化,使用浮点模型和量化校准集

  • 平坦模型,支持零拷贝加载

nncase支持的神经网络模型格式:

  • TFLite

  • ONNX

1.2 nncase架构#

nncase架构

nncase软件栈包括compiler和runtime两部分。

Compiler: 用于在PC上编译神经网络模型,最终生成kmodel文件。主要包括importer, IR, Evaluator, Quantize, Transform优化, Tiling, Partition, Schedule, Codegen等模块。

  • Importer: 将其它神经网络框架的模型导入到nncase中;

  • IR: 中间表示, 分为importer导入的Neutral IR(设备无关)和Neutral IR经lowering转换生成的Target IR(设备相关);

  • Evaluator: Evaluator提供IR的解释执行能力,常被用于Constant Folding/PTQ Calibration等场景;

  • Transform: 用于IR转换和图的遍历优化等;

  • Quantize: 训练后量化, 对要量化的tensor加入量化标记, 根据输入的校正集, 调用 Evaluator进行解释执行, 收集tensor的数据范围, 插入量化/反量化结点, 最后优化消除不必要的量化/反量化结点等;

  • Tiling: 受限于NPU较低的存储器容量,需要将大块计算进行拆分。另外,计算存在大量数据复用时选择Tiling参数会对时延和带宽产生影响;

  • Partition: 将图按ModuleType进行切分, 切分后的每个子图会对应RuntimeModule, 不同类型的RuntimeModule对应不同的Device(CPU/K230);

  • Schedule: 根据优化后图中的数据依赖关系生成计算顺序并分配Buffer;

  • Codegen: 对每个子图分别调用ModuleType对应的codegen,生成RuntimeModule;

Runtime: 集成于用户App, 提供加载kmodel/设置输入数据/KPU执行/获取输出数据等功能。

1.3 开发环境#

1.3.1 操作系统#

支持的操作系统包括Ubuntu 18.04/Ubuntu 20.04。

1.3.2 软件环境#

序号

软件

版本号

1

python

3.6/3.7/3.8/3.9/3.10

2

pip

>=20.3

3

numpy

1.19.5

4

onnx

1.9.0

5

onnx-simplifier

0.3.6

6

Onnxoptimizer

0.2.6

7

Onnxruntime

1.8.0

8

dotnet-runtime

7.0

1.3.3 硬件环境#

K230 evb

2. 编译模型APIs(Python)#

nncase提供了Python APIs, 用于在PC上编译神经网络模型。

2.1 支持的算子#

2.1.1 TFLite算子#

Operator

Is Supported

ABS

Yes

ADD

Yes

ARG_MAX

Yes

ARG_MIN

Yes

AVERAGE_POOL_2D

Yes

BATCH_MATMUL

Yes

CAST

Yes

CEIL

Yes

CONCATENATION

Yes

CONV_2D

Yes

COS

Yes

CUSTOM

Yes

DEPTHWISE_CONV_2D

Yes

DIV

Yes

EQUAL

Yes

EXP

Yes

EXPAND_DIMS

Yes

FLOOR

Yes

FLOOR_DIV

Yes

FLOOR_MOD

Yes

FULLY_CONNECTED

Yes

GREATER

Yes

GREATER_EQUAL

Yes

L2_NORMALIZATION

Yes

LEAKY_RELU

Yes

LESS

Yes

LESS_EQUAL

Yes

LOG

Yes

LOGISTIC

Yes

MAX_POOL_2D

Yes

MAXIMUM

Yes

MEAN

Yes

MINIMUM

Yes

MUL

Yes

NEG

Yes

NOT_EQUAL

Yes

PAD

Yes

PADV2

Yes

MIRROR_PAD

Yes

PACK

Yes

POW

Yes

REDUCE_MAX

Yes

REDUCE_MIN

Yes

REDUCE_PROD

Yes

RELU

Yes

PRELU

Yes

RELU6

Yes

RESHAPE

Yes

RESIZE_BILINEAR

Yes

RESIZE_NEAREST_NEIGHBOR

Yes

ROUND

Yes

RSQRT

Yes

SHAPE

Yes

SIN

Yes

SLICE

Yes

SOFTMAX

Yes

SPACE_TO_BATCH_ND

Yes

SQUEEZE

Yes

BATCH_TO_SPACE_ND

Yes

STRIDED_SLICE

Yes

SQRT

Yes

SQUARE

Yes

SUB

Yes

SUM

Yes

TANH

Yes

TILE

Yes

TRANSPOSE

Yes

TRANSPOSE_CONV

Yes

QUANTIZE

Yes

FAKE_QUANT

Yes

DEQUANTIZE

Yes

GATHER

Yes

GATHER_ND

Yes

ONE_HOT

Yes

SQUARED_DIFFERENCE

Yes

LOG_SOFTMAX

Yes

SPLIT

Yes

HARD_SWISH

Yes

2.1.2 ONNX算子#

Operator

Is Supported

Abs

Yes

Acos

Yes

Acosh

Yes

And

Yes

ArgMax

Yes

ArgMin

Yes

Asin

Yes

Asinh

Yes

Add

Yes

AveragePool

Yes

BatchNormalization

Yes

Cast

Yes

Ceil

Yes

Celu

Yes

Clip

Yes

Compress

Yes

Concat

Yes

Constant

Yes

ConstantOfShape

Yes

Conv

Yes

ConvTranspose

Yes

Cos

Yes

Cosh

Yes

CumSum

Yes

DepthToSpace

Yes

DequantizeLinear

Yes

Div

Yes

Dropout

Yes

Elu

Yes

Exp

Yes

Expand

Yes

Equal

Yes

Erf

Yes

Flatten

Yes

Floor

Yes

Gather

Yes

GatherElements

Yes

GatherND

Yes

Gemm

Yes

GlobalAveragePool

Yes

GlobalMaxPool

Yes

Greater

Yes

GreaterOrEqual

Yes

GRU

Yes

Hardmax

Yes

HardSigmoid

Yes

HardSwish

Yes

Identity

Yes

InstanceNormalization

Yes

LayerNormalization

Yes

LpNormalization

Yes

LeakyRelu

Yes

Less

Yes

LessOrEqual

Yes

Log

Yes

LogSoftmax

Yes

LRN

Yes

LSTM

Yes

MatMul

Yes

MaxPool

Yes

Max

Yes

Min

Yes

Mul

Yes

Neg

Yes

Not

Yes

OneHot

Yes

Pad

Yes

Pow

Yes

PRelu

Yes

QuantizeLinear

Yes

RandomNormal

Yes

RandomNormalLike

Yes

RandomUniform

Yes

RandomUniformLike

Yes

ReduceL1

Yes

ReduceL2

Yes

ReduceLogSum

Yes

ReduceLogSumExp

Yes

ReduceMax

Yes

ReduceMean

Yes

ReduceMin

Yes

ReduceProd

Yes

ReduceSum

Yes

ReduceSumSquare

Yes

Relu

Yes

Reshape

Yes

Resize

Yes

ReverseSequence

Yes

RoiAlign

Yes

Round

Yes

Rsqrt

Yes

Selu

Yes

Shape

Yes

Sign

Yes

Sin

Yes

Sinh

Yes

Sigmoid

Yes

Size

Yes

Slice

Yes

Softmax

Yes

Softplus

Yes

Softsign

Yes

SpaceToDepth

Yes

Split

Yes

Sqrt

Yes

Squeeze

Yes

Sub

Yes

Sum

Yes

Tanh

Yes

Tile

Yes

TopK

Yes

Transpose

Yes

Trilu

Yes

ThresholdedRelu

Yes

Upsample

Yes

Unsqueeze

Yes

Where

Yes

2.2 APIs#

目前编译模型APIs支持TFLite/ONNX等格式的深度学习模型。

2.2.1 CompileOptions#

【描述】

CompileOptions类, 用于配置nncase编译选项,各属性说明如下:

属性名称

类型

是否必须

描述

target

string

指定编译目标, 如’cpu’, ‘k230’

dump_ir

bool

指定是否dump IR, 默认为False

dump_asm

bool

指定是否dump asm汇编文件, 默认为False

dump_dir

string

前面指定dump_ir等开关后, 这里指定dump的目录, 默认为””

input_file

string

ONNX模型超过2GB时,用于指定参数文件路径,默认为””

preprocess

bool

是否开启前处理,默认为False。以下参数仅在 preprocess=True时生效

input_type

string

开启前处理时指定输入数据类型,默认为”float”。当 preprocessTrue时,必须指定为”uint8”或者”float32”

input_shape

list[int]

开启前处理时指定输入数据的shape,默认为[]。当 preprocessTrue时,必须指定

input_range

list[float]

开启前处理时指定输入数据反量化后的浮点数范围,默认为[ ]。当 preprocessTrueinput_typeuint8时,必须指定

input_layout

string

指定输入数据的layout,默认为””

swapRB

bool

是否在 channel维度反转数据,默认为False

mean

list[float]

前处理标准化参数均值,默认为[0,0,0]

std

list[float]

前处理标准化参数方差,默认为[1,1,1]

letterbox_value

float

指定前处理letterbox的填充值,默认为0

output_layout

string

指定输出数据的layout, 默认为””

shape_bucket_enable

bool

是否开启ShapeBucket功能,默认为False。在 dump_ir=True时生效

shape_bucket_range_info

Dict[str, [int, int]]

每个输入shape维度信息中的变量的范围,最小值必须大于等于1

shape_bucket_segments_count

int

输入变量的范围划分为几段

shape_bucket_fix_var_map

Dict[str, int]

固定shape维度信息中的变量为特定的值

2.2.1.1 前处理流程说明#

目前暂不支持自定义前处理顺序,可以根据以下流程示意图,选择所需要的前处理参数进行配置。

graph TD; NewInput("NewInput
(shape = input_shape
dtype = input_type)") -->a(input_layout != ' ')-.Y.->Transpose1["transpose"] -.->b("SwapRB == True")-.Y.->SwapRB["SwapRB"]-.->c("input_type != float32")-.Y.->Dequantize["Dequantize"]-.->d("input_HW != model_HW")-.Y.->LetterBox["LetterBox"] -.->e("std not empty
mean not empty")-.Y.->Normalization["Normalization"]-.->OldInput-->Model_body-->OldOutput-->f("output_layout != ' '")-.Y.->Transpose2["Transpose"]-.-> NewOutput; a--N-->b--N-->c--N-->d--N-->e--N-->OldInput; f--N-->NewOutput; subgraph origin_model OldInput; Model_body ; OldOutput; end

参数说明:

  1. input_range为输入数据类型为定点时,反量化后的浮点数范围。

    a. 输入数据类型为uint8,range为[0,255],input_range为[0,255],则反量化的作用只是进行类型转化,将uint8的数据转化为float32,meanstd参数仍然按照[0,255]的数据进行指定。

    b. 输入数据类型为uint8,range为[0,255],input_range为[0,1],则反量化会将定点数转化为浮点数[0,1],meanstd参数需要按照0~1的数据进行指定。

    graph TD; NewInput_uint8("NewInput_uint8
    [input_type:uint8]") --input_range:0,255 -->dequantize_0["Dequantize"]--float range:0,255--> OldInput_float32 NewInput_uint81("NewInput_uint8
    [input_type:uint8]") --input_range:0,1 -->dequantize_1["Dequantize"]--float range:0,1--> OldInput_float32
  2. input_shape为输入数据的shape,layout为 input_layout,现在支持字符串("NHWC""NCHW")和index两种方式作为 input_layout,并且支持非4D的数据处理。 当按照字符串形式配置 input_layout时,表示输入数据的layout;当按照index形式配置input_layout时,表示输入数据会按照当前配置的 input_layout进行数据转置,即 input_layoutTransposeperm参数。

graph TD; subgraph B NewInput1("NewInput: 1,4,10") --"input_layout:"0,2,1""-->Transpose2("Transpose perm: 0,2,1") --> OldInput2("OldInput: 1,10,4"); end subgraph A NewInput --"input_layout:"NHWC""--> Transpose0("Transpose: NHWC2NCHW") --> OldInput; NewInput("NewInput: 1,224,224,3 (NHWC)") --"input_layout:"0,3,1,2""--> Transpose1("Transpose perm: 0,3,1,2") --> OldInput("OldInput: 1,3,224,224 (NCHW)"); end

output_layout同理,如下图所示。

graph TD; subgraph B OldOutput1("OldOutput: 1,10,4,5,2") --"output_layout: "0,2,3,1,4""--> Transpose5("Transpose perm: 0,2,3,1,4") --> NewOutput1("NewOutput: 1,4,5,10,2"); end subgraph A OldOutput --"output_layout: "NHWC""--> Transpose3("Transpose: NCHW2NHWC") --> NewOutput("NewOutput
NHWC"); OldOutput("OldOutput: (NCHW)") --"output_layout: "0,2,3,1""--> Transpose4("Transpose perm: 0,2,3,1") --> NewOutput("NewOutput
NHWC"); end
2.2.1.2 动态shape参数说明#

ShapeBucket是针对动态shape的一种解决方案,会根据输入长度的范围以及指定的段的数量来对动态shape进行优化。该功能默认为false,需要打开对应的option才能生效,除了指定对应的字段信息,其他流程与编译静态模型没有区别。

  • ONNX

在模型的shape中会有些维度为变量名字,这里以一个ONNX模型的输入为例。

tokens: int64[batch_size, tgt_seq_len] step: float32[seq_len, batch_size]

shape的维度信息中存在seq_lentgt_seq_lenbatch_size这三个变量。 首先是batch_size,虽然是变量的但实际应用的时候固定为3,因此在fix_var_map中添加batch_size = 3,在运行的时候会将这个维度固定为3。 seq_lentgt_seq_len两个是实际会发生改变的,因此需要配置这两个变量的实际范围,也就是range_info的信息。segments_count是实际分段的数量,会根据范围等分为几份,对应的编译时间也会相应增加几倍。

以下为对应的编译参数示例:

compile_options = nncase.CompileOptions()
compile_options.shape_bucket_enable = True
compile_options.shape_bucket_range_info = {"seq_len": [1, 100], "tgt_seq_len": [1, 100]}
compile_options.shape_bucket_segments_count = 2
compile_options.shape_bucket_fix_var_map = {"batch_size": 3}
  • TFLite

TFLite的模型与ONNX不同,shape上暂未标注维度的名称,目前只支持输入中具有一个维度是动态的,并且名称统一配置为-1,配置方式如下:

compile_options = nncase.CompileOptions()
compile_options.shape_bucket_enable = True
compile_options.shape_bucket_range_info = {"-1":[1, 100]}
compile_options.shape_bucket_segments_count = 2
compile_options.shape_bucket_fix_var_map = {"batch_size" : 3}

配置完这些选项后整个编译的流程和静态shape一致。

2.2.1.3 参数配置示例#

实例化CompileOptions,配置各属性的值。

compile_options = nncase.CompileOptions()

compile_options.target = "cpu" #"k230"
compile_options.dump_ir = True  # if False, will not dump the compile-time result.
compile_options.dump_asm = True
compile_options.dump_dir = "dump_path"
compile_options.input_file = ""

# preprocess args
compile_options.preprocess = False
if compile_options.preprocess:
    compile_options.input_type = "uint8"  # "uint8" "float32"
    compile_options.input_shape = [1,224,320,3]
    compile_options.input_range = [0,1]
    compile_options.input_layout = "NHWC" # "NHWC" ”NCHW“
    compile_options.swapRB = False
    compile_options.mean = [0,0,0]
    compile_options.std = [1,1,1]
    compile_options.letterbox_value = 0
    compile_options.output_layout = "NHWC" # "NHWC" "NCHW"

# Dynamic shape args
compile_options.shape_bucket_enable = False
if compile_options.shape_bucket_enable:
    compile_options.shape_bucket_range_info = {"seq_len": [1, 100], "tgt_seq_len": [1, 100]}
    compile_options.shape_bucket_segments_count = 2
    compile_options.shape_bucket_fix_var_map = {"batch_size": 3}

2.2.2 ImportOptions#

【描述】

ImportOptions类, 用于配置nncase导入选项。

【定义】

class ImportOptions:
    def __init__(self) -> None:
        pass

【示例】

实例化ImportOptions, 配置各属性的值。

#import_options
import_options = nncase.ImportOptions()

2.2.3 PTQTensorOptions#

【描述】

PTQTensorOptions类, 用于配置nncase PTQ选项。

名称

类型

是否必须

描述

samples_count

int

指定用于量化的校正集数量

calibrate_method

string

指定量化方法,可选’NoClip’、’Kld’,默认为’Kld’

finetune_weights_method

string

指定是否对权重进行微调,可选’NoFineTuneWeights’、’UseSquant’,默认为’NoFineTuneWeights’

quant_type

string

指定数据量化类型,可选’uint8’,’int8’,’int16’

w_quant_type

string

指定权重量化类型,可选’uint8’,’int8’,’int16’

以上两种类型不可同时为’int16’

quant_scheme

string

导入量化参数配置文件的路径

quant_scheme_strict_mode

bool

是否严格按照quant_scheme执行量化

export_quant_scheme

bool

是否导出量化参数配置文件

export_weight_range_by_channel

bool

是否导出 bychannel形式的weights量化参数,该参数建议设置为 True

混合量化具体使用流程见 MixQuant说明

【示例】

# ptq_options
ptq_options = nncase.PTQTensorOptions()
ptq_options.samples_count = 6
ptq_options.finetune_weights_method = "NoFineTuneWeights"
ptq_options.quant_type = "uint8"
ptq_options.w_quant_type = "uint8"
ptq_options.set_tensor_data(generate_data(input_shape, ptq_options.samples_count, args.dataset))

ptq_options.quant_scheme = ""
ptq_options.quant_scheme_strict_mode = False
ptq_options.export_quant_scheme = True
ptq_options.export_weight_range_by_channel = True

compiler.use_ptq(ptq_options)

2.2.4 set_tensor_data#

【描述】

设置tensor数据。

【定义】

    def set_tensor_data(self, data: List[List[np.ndarray]]) -> None:
        reshape_data = list(map(list, zip(*data)))
        self.cali_data = [RuntimeTensor.from_numpy(
            d) for d in itertools.chain.from_iterable(reshape_data)]

【参数】

名称

类型

描述

data

List[List[np.ndarray]

读取的校准数据

【返回值】

无。

【示例】

# ptq_options
ptq_options = nncase.PTQTensorOptions()
ptq_options.samples_count = 6
ptq_options.set_tensor_data(generate_data(input_shape, ptq_options.samples_count, args.dataset))
compiler.use_ptq(ptq_options)

2.2.5 Compiler#

【描述】

Compiler类, 用于编译神经网络模型。

【定义】

class Compiler:
    _target: _nncase.Target
    _session: _nncase.CompileSession
    _compiler: _nncase.Compiler
    _compile_options: _nncase.CompileOptions
    _quantize_options: _nncase.QuantizeOptions
    _module: IRModule

2.2.6 import_tflite#

【描述】

导入TFLite模型。

【定义】

def import_tflite(self, model_content: bytes, options: ImportOptions) -> None:
    self._compile_options.input_format = "tflite"
    self._import_module(model_content)

【参数】

名称

类型

描述

model_content

byte[]

读取的模型内容

import_options

ImportOptions

导入选项

【返回值】

无。

【示例】

model_content = read_model_file(model)
compiler.import_tflite(model_content, import_options)

2.2.7 import_onnx#

【描述】

导入ONNX模型。

【定义】

def import_onnx(self, model_content: bytes, options: ImportOptions) -> None:
    self._compile_options.input_format = "onnx"
    self._import_module(model_content)

【参数】

名称

类型

描述

model_content

byte[]

读取的模型内容

import_options

ImportOptions

导入选项

【返回值】

无。

【示例】

model_content = read_model_file(model)
compiler.import_onnx(model_content, import_options)

2.2.8 use_ptq#

【描述】

设置PTQ配置选项。

  • K230默认必须使用量化。

【定义】

use_ptq(ptq_options)

【参数】

名称

类型

描述

ptq_options

PTQTensorOptions

PTQ配置选项

【返回值】

无。

【示例】

compiler.use_ptq(ptq_options)

2.2.9 compile#

【描述】

编译神经网络模型。

【定义】

compile()

【参数】

无。

【返回值】

无。

【示例】

compiler.compile()

2.2.10 gencode_tobytes#

【描述】

生成kmodel字节流。

【定义】

gencode_tobytes()

【参数】

无。

【返回值】

bytes[]

【示例】

kmodel = compiler.gencode_tobytes()
with open(os.path.join(infer_dir, 'test.kmodel'), 'wb') as f:
    f.write(kmodel)

2.3 示例#

下面示例中使用到的模型和python编译脚本:

  • 原始模型文件位于/path/to/k230_sdk/src/big/nncase/examples/models目录

  • python编译脚本位于/path/to/k230_sdk/src/big/nncase/examples/scripts目录

2.3.1 编译TFLite模型#

mbv2_tflite.py脚本如下:

import os
import argparse
import numpy as np
from PIL import Image
import nncase

def read_model_file(model_file):
    with open(model_file, 'rb') as f:
        model_content = f.read()
    return model_content

def generate_data(shape, batch, calib_dir):
    img_paths = [os.path.join(calib_dir, p) for p in os.listdir(calib_dir)]
    data = []
    for i in range(batch):
        assert i < len(img_paths), "calibration images not enough."
        img_data = Image.open(img_paths[i]).convert('RGB')
        img_data = img_data.resize((shape[3], shape[2]), Image.BILINEAR)
        img_data = np.asarray(img_data, dtype=np.uint8)
        img_data = np.transpose(img_data, (2, 0, 1))
        data.append([img_data[np.newaxis, ...]])
    return data

def main():
    parser = argparse.ArgumentParser(prog="nncase")
    parser.add_argument("--target", type=str, help='target to run')
    parser.add_argument("--model", type=str, help='model file')
    parser.add_argument("--dataset", type=str, help='calibration_dataset')
    args = parser.parse_args()

    input_shape = [1, 3, 224, 224]
    dump_dir = 'tmp/mbv2_tflite'

    # compile_options
    compile_options = nncase.CompileOptions()
    compile_options.target = args.target
    compile_options.preprocess = True
    compile_options.swapRB = False
    compile_options.input_shape = input_shape
    compile_options.input_type = 'uint8'
    compile_options.input_range = [0, 255]
    compile_options.mean = [127.5, 127.5, 127.5]
    compile_options.std = [127.5, 127.5, 127.5]
    compile_options.input_layout = 'NCHW'
    compile_options.dump_ir = True
    compile_options.dump_asm = True
    compile_options.dump_dir = dump_dir

    # compiler
    compiler = nncase.Compiler(compile_options)

    # import
    model_content = read_model_file(args.model)
    import_options = nncase.ImportOptions()
    compiler.import_tflite(model_content, import_options)

    # ptq_options
    ptq_options = nncase.PTQTensorOptions()
    ptq_options.samples_count = 6
    ptq_options.set_tensor_data(generate_data(input_shape, ptq_options.samples_count, args.dataset))
    compiler.use_ptq(ptq_options)

    # compile
    compiler.compile()

    # kmodel
    kmodel = compiler.gencode_tobytes()
    with open(os.path.join(dump_dir, 'test.kmodel'), 'wb') as f:
        f.write(kmodel)

if __name__ == '__main__':
    main()

执行如下命令即可编译mobilenetv2的TFLite模型, target为k230。

root@c285a41a7243:/mnt/# cd src/big/nncase/examples
root@c285a41a7243:/mnt/src/big/nncase/examples# python3 ./scripts/mbv2_tflite.py --target k230 --model models/mbv2.tflite --dataset calibration_dataset

2.3.2 编译ONNX模型#

针对ONNX模型, 建议先使用ONNX Simplifier进行简化, 然后再使用nncase编译。

yolov5s_onnx.py 脚本如下:

import os
import argparse
import numpy as np
from PIL import Image
import onnxsim
import onnx
import nncase

def parse_model_input_output(model_file):
    onnx_model = onnx.load(model_file)
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    input_names = list(set(input_all) - set(input_initializer))
    input_tensors = [
        node for node in onnx_model.graph.input if node.name in input_names]

    # input
    inputs = []
    for _, e in enumerate(input_tensors):
        onnx_type = e.type.tensor_type
        input_dict = {}
        input_dict['name'] = e.name
        input_dict['dtype'] = onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[onnx_type.elem_type]
        input_dict['shape'] = [(i.dim_value if i.dim_value != 0 else d) for i, d in zip(
            onnx_type.shape.dim, [1, 3, 224, 224])]
        inputs.append(input_dict)

    return onnx_model, inputs


def onnx_simplify(model_file, dump_dir):
    onnx_model, inputs = parse_model_input_output(model_file)
    onnx_model = onnx.shape_inference.infer_shapes(onnx_model)
    input_shapes = {}
    for input in inputs:
        input_shapes[input['name']] = input['shape']

    onnx_model, check = onnxsim.simplify(onnx_model, input_shapes=input_shapes)
    assert check, "Simplified ONNX model could not be validated"

    model_file = os.path.join(dump_dir, 'simplified.onnx')
    onnx.save_model(onnx_model, model_file)
    return model_file


def read_model_file(model_file):
    with open(model_file, 'rb') as f:
        model_content = f.read()
    return model_content

def generate_data_ramdom(shape, batch):
    data = []
    for i in range(batch):
        data.append([np.random.randint(0, 256, shape).astype(np.uint8)])
    return data


def generate_data(shape, batch, calib_dir):
    img_paths = [os.path.join(calib_dir, p) for p in os.listdir(calib_dir)]
    data = []
    for i in range(batch):
        assert i < len(img_paths), "calibration images not enough."
        img_data = Image.open(img_paths[i]).convert('RGB')
        img_data = img_data.resize((shape[3], shape[2]), Image.BILINEAR)
        img_data = np.asarray(img_data, dtype=np.uint8)
        img_data = np.transpose(img_data, (2, 0, 1))
        data.append([img_data[np.newaxis, ...]])
    return data

def main():
    parser = argparse.ArgumentParser(prog="nncase")
    parser.add_argument("--target", type=str, help='target to run')
    parser.add_argument("--model", type=str, help='model file')
    parser.add_argument("--dataset", type=str, help='calibration_dataset')

    args = parser.parse_args()

    input_shape = [1, 3, 320, 320]

    dump_dir = 'tmp/yolov5s_onnx'
    if not os.path.exists(dump_dir):
        os.makedirs(dump_dir)

    # onnx simplify
    model_file = onnx_simplify(args.model, dump_dir)

    # compile_options
    compile_options = nncase.CompileOptions()
    compile_options.target = args.target
    compile_options.preprocess = True
    compile_options.swapRB = False
    compile_options.input_shape = input_shape
    compile_options.input_type = 'uint8'
    compile_options.input_range = [0, 255]
    compile_options.mean = [0, 0, 0]
    compile_options.std = [255, 255, 255]
    compile_options.input_layout = 'NCHW'
    compile_options.output_layout = 'NCHW'
    compile_options.dump_ir = True
    compile_options.dump_asm = True
    compile_options.dump_dir = dump_dir

    # compiler
    compiler = nncase.Compiler(compile_options)

    # import
    model_content = read_model_file(model_file)
    import_options = nncase.ImportOptions()
    compiler.import_onnx(model_content, import_options)

    # ptq_options
    ptq_options = nncase.PTQTensorOptions()
    ptq_options.samples_count = 6
    ptq_options.set_tensor_data(generate_data(input_shape, ptq_options.samples_count, args.dataset))
    compiler.use_ptq(ptq_options)

    # compile
    compiler.compile()

    # kmodel
    kmodel = compiler.gencode_tobytes()
    with open(os.path.join(dump_dir, 'test.kmodel'), 'wb') as f:
        f.write(kmodel)

if __name__ == '__main__':
    main()

执行如下命令即可编译ONNX模型, target为k230。

root@c285a41a7243:/mnt/# cd src/big/nncase/examples
root@c285a41a7243: /mnt/src/big/nncase/examples # python3 ./scripts/yolov5s_onnx.py --target k230 --model models/yolov5s.onnx --dataset calibration_dataset

3. 模拟器APIs(Python)#

除了编译模型APIs,nncase还提供了推理模型的APIs,在PC上可推理编译模型生成的kmodel,用来验证nncase推理结果和相应深度学习框架的runtime的结果是否一致等。

3.1 APIs#

3.1.1 MemoryRange#

【描述】

MemoryRange类, 用于表示内存范围。

【定义】

py::class_<memory_range>(m, "MemoryRange")
    .def_readwrite("location", &memory_range::memory_location)
    .def_property(
        "dtype", [](const memory_range &range) { return to_dtype(range.datatype); },
        [](memory_range &range, py::object dtype) { range.datatype = from_dtype(py::dtype::from_args(dtype)); })
    .def_readwrite("start", &memory_range::start)
    .def_readwrite("size", &memory_range::size);

【属性】

名称

类型

描述

location

int

内存位置, 0表示input, 1表示output, 2表示rdata, 3表示data, 4表示shared_data

dtype

python数据类型

数据类型

start

int

内存起始地址

Size

int

内存大小

【示例】

mr = nncase.MemoryRange()

3.1.2 RuntimeTensor#

【描述】

RuntimeTensor类, 用于表示运行时tensor。

【定义】

py::class_<runtime_tensor>(m, "RuntimeTensor")
    .def_static("from_numpy", [](py::array arr) {
        auto src_buffer = arr.request();
        auto datatype = from_dtype(arr.dtype());
        auto tensor = host_runtime_tensor::create(
            datatype,
            to_rt_shape(src_buffer.shape),
            to_rt_strides(src_buffer.itemsize, src_buffer.strides),
            gsl::make_span(reinterpret_cast<gsl::byte *>(src_buffer.ptr), src_buffer.size * src_buffer.itemsize),
            [=](gsl::byte *) { arr.dec_ref(); })
                          .unwrap_or_throw();
        arr.inc_ref();
        return tensor;
    })
    .def("copy_to", [](runtime_tensor &from, runtime_tensor &to) {
        from.copy_to(to).unwrap_or_throw();
    })
    .def("to_numpy", [](runtime_tensor &tensor) {
        auto host = tensor.as_host().unwrap_or_throw();
        auto src_map = std::move(hrt::map(host, hrt::map_read).unwrap_or_throw());
        auto src_buffer = src_map.buffer();
        return py::array(
            to_dtype(tensor.datatype()),
            tensor.shape(),
            to_py_strides(runtime::get_bytes(tensor.datatype()), tensor.strides()),
            src_buffer.data());
    })
    .def_property_readonly("dtype", [](runtime_tensor &tensor) {
        return to_dtype(tensor.datatype());
    })
    .def_property_readonly("shape", [](runtime_tensor &tensor) {
        return to_py_shape(tensor.shape());
    });

【属性】

名称

类型

描述

dtype

python数据类型

Tensor的数据类型

shape

list

tensor的形状

3.1.3 from_numpy#

【描述】

从numpy.ndarray构造RuntimeTensor对象。

【定义】

from_numpy(py::array arr)

【参数】

名称

类型

描述

Arr

numpy.ndarray

numpy.ndarray对象

【返回值】

RuntimeTensor对象。

【示例】

tensor = nncase.RuntimeTensor.from_numpy(self.inputs[i]['data'])

3.1.4 copy_to#

【描述】

拷贝RuntimeTensor。

【定义】

copy_to(RuntimeTensor to)

【参数】

名称

类型

描述

to

RuntimeTensor

RuntimeTensor对象

【返回值】

无。

【示例】

sim.get_output_tensor(i).copy_to(to)

3.1.5 to_numpy#

【描述】

将RuntimeTensor转换为numpy.ndarray对象。

【定义】

to_numpy()

【参数】

无。

【返回值】

numpy.ndarray对象。

【示例】

arr = sim.get_output_tensor(i).to_numpy()

3.1.6 Simulator#

【描述】

Simulator类, 用于在PC上推理kmodel。

【定义】

py::class_<interpreter>(m, "Simulator")
    .def(py::init())
    .def("load_model", [](interpreter &interp, gsl::span<const gsl::byte> buffer) { interp.load_model(buffer).unwrap_or_throw(); })
    .def_property_readonly("inputs_size", &interpreter::inputs_size)
    .def_property_readonly("outputs_size", &interpreter::outputs_size)
    .def("get_input_desc", &interpreter::input_desc)
    .def("get_output_desc", &interpreter::output_desc)
    .def("get_input_tensor", [](interpreter &interp, size_t index) { return interp.input_tensor(index).unwrap_or_throw(); })
    .def("set_input_tensor", [](interpreter &interp, size_t index, runtime_tensor tensor) { return interp.input_tensor(index, tensor).unwrap_or_throw(); })
    .def("get_output_tensor", [](interpreter &interp, size_t index) { return interp.output_tensor(index).unwrap_or_throw(); })
    .def("set_output_tensor", [](interpreter &interp, size_t index, runtime_tensor tensor) { return interp.output_tensor(index, tensor).unwrap_or_throw(); })
    .def("run", [](interpreter &interp) { interp.run().unwrap_or_throw(); });

【属性】

名称

类型

描述

inputs_size

int

输入个数

outputs_size

int

输出个数

【示例】

sim = nncase.Simulator()

3.1.7 load_model#

【描述】

加载kmodel。

【定义】

load_model(model_content)

【参数】

名称

类型

描述

model_content

byte[]

kmodel字节流

【返回值】

无。

【示例】

sim.load_model(kmodel)

3.1.8 get_input_desc#

【描述】

获取指定索引的输入的描述信息。

【定义】

get_input_desc(index)

【参数】

名称

类型

描述

index

int

输入的索引

【返回值】

MemoryRange

【示例】

input_desc_0 = sim.get_input_desc(0)

3.1.9 get_output_desc#

【描述】

获取指定索引的输出的描述信息。

【定义】

get_output_desc(index)

【参数】

名称

类型

描述

index

int

输出的索引

【返回值】

MemoryRange

【示例】

output_desc_0 = sim.get_output_desc(0)

3.1.10 get_input_tensor#

【描述】

获取指定索引的输入的RuntimeTensor。

【定义】

get_input_tensor(index)

【参数】

名称

类型

描述

index

int

输入tensor的索引

【返回值】

RuntimeTensor

【示例】

input_tensor_0 = sim.get_input_tensor(0)

3.1.11 set_input_tensor#

【描述】

设置指定索引的输入的RuntimeTensor。

【定义】

set_input_tensor(index, tensor)

【参数】

名称

类型

描述

index

int

输入tensor的索引

tensor

RuntimeTensor

输入tensor

【返回值】

无。

【示例】

sim.set_input_tensor(0, nncase.RuntimeTensor.from_numpy(self.inputs[0]['data']))

3.1.12 get_output_tensor#

【描述】

获取指定索引的输出的RuntimeTensor。

【定义】

get_output_tensor(index)

【参数】

名称

类型

描述

index

int

输出tensor的索引

【返回值】

RuntimeTensor

【示例】

output_arr_0 = sim.get_output_tensor(0).to_numpy()

3.1.13 set_output_tensor#

【描述】

设置指定索引的输出的RuntimeTensor。

【定义】

set_output_tensor(index, tensor)

【参数】

名称

类型

描述

index

int

输出tensor的索引

tensor

RuntimeTensor

输出tensor

【返回值】

无。

【示例】

sim.set_output_tensor(0, tensor)

3.1.14 run#

【描述】

运行kmodel推理。

【定义】

run()

【参数】

无。

【返回值】

无。

【示例】

sim.run()

3.2 示例#

前置条件: yolov5s_onnx.py脚本已编译过yolov5s.onnx模型。

yolov5s_onnx_simu.py位于/path/to/k230_sdk/src/big/nncase/examples/scripts子目录,内容如下:

import os
import copy
import argparse
import numpy as np
import onnx
import onnxruntime as ort
import nncase

def read_model_file(model_file):
    with open(model_file, 'rb') as f:
        model_content = f.read()
    return model_content

def cosine(gt, pred):
    return (gt @ pred) / (np.linalg.norm(gt, 2) * np.linalg.norm(pred, 2))

def main():
    parser = argparse.ArgumentParser(prog="nncase")
    parser.add_argument("--model", type=str, help='original model file')
    parser.add_argument("--model_input", type=str, help='input bin file for original model')
    parser.add_argument("--kmodel", type=str, help='kmodel file')
    parser.add_argument("--kmodel_input", type=str, help='input bin file for kmodel')
    args = parser.parse_args()

    # cpu inference
    ort_session = ort.InferenceSession(args.model)
    output_names = []
    model_outputs = ort_session.get_outputs()
    for i in range(len(model_outputs)):
        output_names.append(model_outputs[i].name)
    model_input = ort_session.get_inputs()[0]
    model_input_name = model_input.name
    model_input_type = np.float32
    model_input_shape = model_input.shape
    model_input_data = np.fromfile(args.model_input, model_input_type).reshape(model_input_shape)
    cpu_results = []
    cpu_results = ort_session.run(output_names, { model_input_name : model_input_data })

    # create simulator
    sim = nncase.Simulator()

    # read kmodel
    kmodel = read_model_file(args.kmodel)

    # load kmodel
    sim.load_model(kmodel)

    # read input.bin
    # input_tensor=sim.get_input_tensor(0).to_numpy()
    dtype = sim.get_input_desc(0).dtype
    input = np.fromfile(args.kmodel_input, dtype).reshape([1, 3, 320, 320])

    # set input for simulator
    sim.set_input_tensor(0, nncase.RuntimeTensor.from_numpy(input))

    # simulator inference
    nncase_results = []
    sim.run()
    for i in range(sim.outputs_size):
        nncase_result = sim.get_output_tensor(i).to_numpy()
        nncase_results.append(copy.deepcopy(nncase_result))

    # compare
    for i in range(sim.outputs_size):
        cos = cosine(np.reshape(nncase_results[i], (-1)), np.reshape(cpu_results[i], (-1)))
        print('output {0} cosine similarity : {1}'.format(i, cos))

if __name__ == '__main__':
    main()

执行推理脚本

root@5f718e19f8a7:/mnt/# cd src/big/nncase/examples
root@5f718e19f8a7:/mnt/src/big/nncase/examples # export PATH=$PATH:/usr/local/lib/python3.8/dist-packages/
root@5f718e19f8a7:/mnt/src/big/nncase/examples # python3 scripts/yolov5s_onnx_simu.py --model models/yolov5s.onnx --model_input object_detect/data/input_fp32.bin --kmodel tmp/yolov5s_onnx/test.kmodel --kmodel_input object_detect/data/input_uint8.bin

nncase simulator和CPU推理结果对比如下

output 0 cosine similarity : 0.9997244477272034
output 1 cosine similarity : 0.999757707118988
output 2 cosine similarity : 0.9997308850288391

4. KPU运行时APIs(C++)#

4.1 简介#

KPU运行时APIs用于在AI设备加载kmodel,设置输入数据,执行KPU/CPU计算,获取输出数据等。

目前只提供C++ APIs,相关的头文件和静态库在/path/to/k230_sdk/src/big/nncase/riscv64目录下。

$ tree -L 3 riscv64/
riscv64/
├── gsl
│   └── gsl-lite.hpp
├── nncase
│   ├── include
│      └── nncase
│   └── lib
│       ├── cmake
│       ├── libfunctional_k230.a
│       ├── libnncase.rt_modules.k230.a
│       └── libNncase.Runtime.Native.a
└── rvvlib
    ├── include
       ├── k230_math.h
       ├── nms.h
       └── rvv_math.h
    └── librvv.a

8 directories, 8 files

4.2 APIs#

4.2.1 hrt::create#

【描述】

创建runtime_tensor。

【定义】

(1) NNCASE_API result<runtime_tensor> create(typecode_t datatype, dims_t shape, memory_pool_t pool = pool_shared_first) noexcept;
(2) NNCASE_API result<runtime_tensor> create(typecode_t datatype, dims_t shape, gsl::span<gsl::byte> data, bool copy,
       memory_pool_t pool = pool_shared_first) noexcept;
(3)NNCASE_API result<runtime_tensor>create(typecode_t datatype, dims_t shape, strides_t strides, gsl::span<gsl::byte> data, bool copy, memory_pool_t pool = pool_shared_first, uintptr_t physical_address = 0) noexcept;

【参数】

名称

类型

描述

datatype

typecode_t

数据类型, 如dt_float32, dt_uint8等

shape

dims_t

tensor的形状

data

gsl::span<gsl::byte>

用户态数据buffer

copy

bool

是否拷贝

pool

memory_pool_t

内存池类型, 默认值为pool_shared_first

physical_address

uintptr_t

用户指定buffer的物理地址

【返回值】

result<runtime_tensor>

【示例】

// create input tensor
auto input_desc = interp.input_desc(0);
auto input_shape = interp.input_shape(0);
auto input_tensor = host_runtime_tensor::create(input_desc.datatype, input_shape, hrt::pool_shared).expect("cannot create input tensor");

4.2.2 hrt::sync#

【描述】

同步tensor的cache。

  • 对用户的输入数据, 需要调用 此接口的sync_write_back确保数据已刷入ddr。

  • 对gnne/ai2d计算后输出数据,默认gnne/ai2d runtime已做了sync_invalidate处理。

【定义】

NNCASE_API result<void> sync(runtime_tensor &tensor, sync_op_t op, bool force = false) noexcept;

【参数】

名称

类型

描述

tensor

runtime_tensor

要操作的tensor

op

sync_op_t

sync_invalidate(将tensor的cache invalidate)或sync_write_back(将tensor的cache写入ddr)

force

bool

是否强制执行

【返回值】

result<void>

【示例】

hrt::sync(input_tensor, sync_op_t::sync_write_back, true).expect("sync write_back failed");

4.2.3 interpreter::load_model#

【描述】

加载kmodel模型。

【定义】

NNCASE_NODISCARD result<void> load_model(gsl::span<const gsl::byte> buffer) noexcept;

【参数】

名称

类型

描述

buffer

gsl::span <const gsl::byte>

kmodel buffer

【返回值】

result<void>

【示例】

interpreter interp;
auto model = read_binary_file<unsigned char>(kmodel);
interp.load_model({(const gsl::byte *)model.data(), model.size()}).expect("cannot load model.");

4.2.4 interpreter::inputs_size#

【描述】

获取模型输入的个数。

【定义】

size_t inputs_size() const noexcept;

【参数】

无。

【返回值】

size_t

【示例】

auto inputs_size = interp.inputs_size();

4.2.5 interpreter::outputs_size#

【描述】

获取模型输出的个数。

【定义】

size_t outputs_size() const noexcept;

【参数】

无。

【返回值】

size_t

【示例】

auto outputs_size = interp.outputs_size();

4.2.6 interpreter:: input_shape#

【描述】

获取模型指定输入的形状。

【定义】

const runtime_shape_t &input_shape(size_t index) const noexcept;

【参数】

名称

类型

描述

index

size_t

输入的索引

【返回值】

runtime_shape_t

【示例】

auto shape = interp.input_shape(0);

4.2.7 interpreter:: output_shape#

【描述】

获取模型指定输出的形状。

【定义】

const runtime_shape_t &output_shape(size_t index) const noexcept;

【参数】

名称

类型

描述

index

size_t

输出的索引

【返回值】

runtime_shape_t

【示例】

auto shape = interp.output_shape(0);

4.2.8 interpreter:: input_tensor#

【描述】

获取/设置指定索引的输入tensor。

【定义】

(1) result<runtime_tensor> input_tensor(size_t index) noexcept;
(2) result<void> input_tensor(size_t index, runtime_tensor tensor) noexcept;

【参数】

名称

类型

描述

index

size_t

输入的索引

tensor

runtime_tensor

输入对应的runtime tensor

【返回值】

(1) result<runtime_tensor>
(2) result<void>
​```cpp

【示例】

​```cpp
// set input
interp.input_tensor(0, input_tensor).expect("cannot set input tensor");

4.2.9 interpreter:: output_tensor#

【描述】

获取/设置指定索引的输出tensor。

【定义】

(1) result<runtime_tensor> output_tensor(size_t index) noexcept;
(2) result<void> output_tensor(size_t index, runtime_tensor tensor) noexcept;

【参数】

名称

类型

描述

index

size_t

输出的索引

tensor

runtime_tensor

输出对应的runtime tensor

【返回值】

(1) result<runtime_tensor>
(2) result<void>

【示例】

// get output
auto output_tensor = interp.output_tensor(0).expect("cannot get output tensor");

4.2.10 interpreter:: run#

【描述】

执行KPU计算。

【定义】

result<void> run() noexcept;

【参数】

无。

【返回值】

返回result <void>。

【示例】

// run
interp.run().expect("error occurred in running model");

4.3 示例#

#include <chrono>
#include <fstream>
#include <iostream>
#include <nncase/runtime/interpreter.h>
#include <nncase/runtime/runtime_op_utility.h>

#define USE_OPENCV 1
#define preprocess 1

#if USE_OPENCV
#include <opencv2/highgui.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#endif

using namespace nncase;
using namespace nncase::runtime;
using namespace nncase::runtime::detail;

#define INTPUT_HEIGHT 224
#define INTPUT_WIDTH 224
#define INTPUT_CHANNELS 3

template <class T>
std::vector<T> read_binary_file(const std::string &file_name)
{
    std::ifstream ifs(file_name, std::ios::binary);
    ifs.seekg(0, ifs.end);
    size_t len = ifs.tellg();
    std::vector<T> vec(len / sizeof(T), 0);
    ifs.seekg(0, ifs.beg);
    ifs.read(reinterpret_cast<char *>(vec.data()), len);
    ifs.close();
    return vec;
}

void read_binary_file(const char *file_name, char *buffer)
{
    std::ifstream ifs(file_name, std::ios::binary);
    ifs.seekg(0, ifs.end);
    size_t len = ifs.tellg();
    ifs.seekg(0, ifs.beg);
    ifs.read(buffer, len);
    ifs.close();
}

static std::vector<std::string> read_txt_file(const char *file_name)
{
    std::vector<std::string> vec;
    vec.reserve(1024);

    std::ifstream fp(file_name);
    std::string label;

    while (getline(fp, label))
    {
        vec.push_back(label);
    }

    return vec;
}

template<typename T>
static int softmax(const T* src, T* dst, int length)
{
    const T alpha = *std::max_element(src, src + length);
    T denominator{ 0 };

    for (int i = 0; i < length; ++i) {
        dst[i] = std::exp(src[i] - alpha);
        denominator += dst[i];
    }

    for (int i = 0; i < length; ++i) {
        dst[i] /= denominator;
    }

    return 0;
}

#if USE_OPENCV
std::vector<uint8_t> hwc2chw(cv::Mat &img)
{
    std::vector<uint8_t> vec;
    std::vector<cv::Mat> rgbChannels(3);
    cv::split(img, rgbChannels);
    for (auto i = 0; i < rgbChannels.size(); i++)
    {
        std::vector<uint8_t> data = std::vector<uint8_t>(rgbChannels[i].reshape(1, 1));
        vec.insert(vec.end(), data.begin(), data.end());
    }

    return vec;
}
#endif

static int inference(const char *kmodel_file, const char *image_file, const char *label_file)
{
    // load kmodel
    interpreter interp;
    
    // 从内存加载kmodel
    auto kmodel = read_binary_file<unsigned char>(kmodel_file);
    interp.load_model({ (const gsl::byte *)kmodel.data(), kmodel.size() }).expect("cannot load kmodel.");
    // 从文件流加载kmodel
    std::ifstream ifs(kmodel_file, std::ios::binary);
    interp.load_model(ifs).expect("cannot load kmodel");
    

    // create input tensor
    auto input_desc = interp.input_desc(0);
    auto input_shape = interp.input_shape(0);
    auto input_tensor = host_runtime_tensor::create(input_desc.datatype, input_shape, hrt::pool_shared).expect("cannot create input tensor");
    interp.input_tensor(0, input_tensor).expect("cannot set input tensor");

    // create output tensor
    // auto output_desc = interp.output_desc(0);
    // auto output_shape = interp.output_shape(0);
    // auto output_tensor = host_runtime_tensor::create(output_desc.datatype, output_shape, hrt::pool_shared).expect("cannot create output tensor");
    // interp.output_tensor(0, output_tensor).expect("cannot set output tensor");

    // set input data
    auto dst = input_tensor.impl()->to_host().unwrap()->buffer().as_host().unwrap().map(map_access_::map_write).unwrap().buffer();
#if USE_OPENCV
    cv::Mat img = cv::imread(image_file);
    cv::resize(img, img, cv::Size(INTPUT_WIDTH, INTPUT_HEIGHT), cv::INTER_NEAREST);
    auto input_vec = hwc2chw(img);
    memcpy(reinterpret_cast<char *>(dst.data()), input_vec.data(), input_vec.size());
#else
    read_binary_file(image_file, reinterpret_cast<char *>(dst.data()));
#endif
    hrt::sync(input_tensor, sync_op_t::sync_write_back, true).expect("sync write_back failed");

    // run
    size_t counter = 1;
    auto start = std::chrono::steady_clock::now();
    for (size_t c = 0; c < counter; c++)
    {
        interp.run().expect("error occurred in running model");
    }
    auto stop = std::chrono::steady_clock::now();
    double duration = std::chrono::duration<double, std::milli>(stop - start).count();
    std::cout << "interp.run() took: " << duration / counter << " ms" << std::endl;

    // get output data
    auto output_tensor = interp.output_tensor(0).expect("cannot set output tensor");
    dst = output_tensor.impl()->to_host().unwrap()->buffer().as_host().unwrap().map(map_access_::map_read).unwrap().buffer();
    float *output_data = reinterpret_cast<float *>(dst.data());
    auto out_shape = interp.output_shape(0);
    auto size = compute_size(out_shape);

    // postprogress softmax by cpu
    std::vector<float> softmax_vec(size, 0);
    auto buf = softmax_vec.data();
    softmax(output_data, buf, size);
    auto it = std::max_element(buf, buf + size);
    size_t idx = it - buf;

    // load label
    auto labels = read_txt_file(label_file);
    std::cout << "image classify result: " << labels[idx] << "(" << *it << ")" << std::endl;

    return 0;
}

int main(int argc, char *argv[])
{
    std::cout << "case " << argv[0] << " built at " << __DATE__ << " " << __TIME__ << std::endl;
    if (argc != 4)
    {
        std::cerr << "Usage: " << argv[0] << " <kmodel> <image> <label>" << std::endl;
        return -1;
    }

    int ret = inference(argv[1], argv[2], argv[3]);
    if (ret)
    {
        std::cerr << "inference failed: ret = " << ret << std::endl;
        return -2;
    }

    return 0;
}

5. AI2D 运行时APIs(C++)#

5.1 简介#

AI2D运行时APIs用于在AI设备配置AI2D的参数,生成相关寄存器配置,执行AI2D计算等。请在使用前阅读最后一部分注意事项

5.1.1 支持的格式转换#

输入格式

输出格式

备注

YUV420_NV12

RGB_planar/YUV420_NV12

YUV420_NV21

RGB_planar/YUV420_NV21

YUV420_I420

RGB_planar/YUV420_I420

YUV400

YUV400

NCHW(RGB_planar)

NCHW(RGB_planar)

RGB_packed

RGB_planar/RGB_packed

RAW16

RAW16/8

深度图,执行shift操作

5.1.2 功能描述#

功能

描述

备注

仿射变换

支持输入格式YUV420、YUV400、RGB(planar/packed) 支持深度图RAW16格式 支持输出格式YUV400、RGB、深度图

Crop/Resize/Padding

支持输入YUV420、YUV400、RGB 支持深度图RAW16格式 Resize支持中间NCHW的排列格式 支持输出格式YUV420、YUV400、RGB

只支持padding常数

Shift

支持输入格式Raw16 支持输出格式Raw8

符号位

支持有符号和无符号输入

5.2 APIs#

5.2.1 ai2d_format#

【描述】

ai2d_format用于配置输入输出的可选数据格式。

【定义】

enum class ai2d_format
{
    YUV420_NV12 = 0,
    YUV420_NV21 = 1,
    YUV420_I420 = 2,
    NCHW_FMT = 3,
    RGB_packed = 4,
    RAW16 = 5,
}

5.2.2 ai2d_interp_method#

【描述】

ai2d_interp_method用于配置可选的插值方式。

【定义】

 enum class ai2d_interp_method
{
    tf_nearest = 0,
    tf_bilinear = 1,
    cv2_nearest = 2,
    cv2_bilinear = 3,
}

5.2.3 ai2d_interp_mode#

【描述】

ai2d_interp_mode 用于配置可选的插值模式。

【定义】

enum class ai2d_interp_mode
{
    none = 0,
    align_corner = 1,
    half_pixel = 2,
}

5.2.4 ai2d_pad_mode#

【描述】

ai2d_pad_mode用于配置可选的padding模式,目前只支持常数padding。

【定义】

enum class ai2d_pad_mode
{
    constant = 0,
    copy = 1,
    mirror = 2,
}

5.2.5 ai2d_datatype_t#

【描述】

ai2d_datatype_t 用于设置AI2D计算过程中的数据类型。

【定义】

struct ai2d_datatype_t
{
    ai2d_format src_format;
    ai2d_format dst_format;
    datatype_t src_type;
    datatype_t dst_type;
    ai2d_data_loc src_loc = ai2d_data_loc::ddr;
    ai2d_data_loc dst_loc = ai2d_data_loc::ddr;
}

【参数】

名称

类型

描述

src_format

ai2d_format

输入数据格式

dst_format

ai2d_format

输出数据格式

src_type

datatype_t

输入数据类型

dst_type

datatype_t

输出数据类型

src_loc

ai2d_data_loc

输入数据位置,默认ddr

dst_loc

ai2d_data_loc

输出数据位置,默认ddr

【示例】

ai2d_datatype_t ai2d_dtype { ai2d_format::RAW16, ai2d_format::NCHW_FMT, datatype_t::dt_uint16, datatype_t::dt_uint8 };

5.2.6 ai2d_crop_param_t#

【描述】

ai2d_crop_param_t用于配置crop相关的参数。

【定义】

struct ai2d_crop_param_t
{
    bool crop_flag = false;
    int32_t start_x = 0;
    int32_t start_y = 0;
    int32_t width = 0;
    int32_t height = 0;
}

【参数】

名称

类型

描述

crop_flag

bool

是否开启crop功能

start_x

int

宽度方向的起始像素

start_y

int

高度方向的起始像素

width

int

宽度方向的crop长度

height

int

高度方向的crop长度

【示例】

ai2d_crop_param_t crop_param { true, 40, 30, 400, 600 };

5.2.7 ai2d_shift_param_t#

【描述】

ai2d_shift_param_t用于配置shift相关的参数。

【定义】

struct ai2d_shift_param_t
{
    bool shift_flag = false;
    int32_t shift_val = 0;
}

【参数】

名称

类型

描述

shift_flag

bool

是否开启shift功能

shift_val

int

右移的比特数

【示例】

ai2d_shift_param_t shift_param { true, 2 };

5.2.8 ai2d_pad_param_t#

【描述】

ai2d_pad_param_t 用于配置pad相关的参数。

【定义】

struct ai2d_pad_param_t
{
    bool pad_flag = false;
    runtime_paddings_t paddings;
    ai2d_pad_mode pad_mode = ai2d_pad_mode::constant;
    std::vector<int32_t> pad_val; // by channel
}

【参数】

名称

类型

描述

pad_flag

bool

是否开启pad功能

paddings

runtime_paddings_t

各个维度的padding, shape=[4, 2],分别表示dim0到dim4的前后padding的个数,其中dim0/dim1固定配置{0, 0}

pad_mode

ai2d_pad_mode

padding模式,只支持constant padding

pad_val

std::vector<int32_t>

每个channel的padding value

【示例】

ai2d_pad_param_t pad_param { false, { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 60, 60 } }, ai2d_pad_mode::constant, { 255 } };

5.2.9 ai2d_resize_param_t#

【描述】

ai2d_resize_param_t 用于配置resize相关的参数。

【定义】

struct ai2d_resize_param_t
{
    bool resize_flag = false;
    ai2d_interp_method interp_method = ai2d_interp_method::tf_bilinear;
    ai2d_interp_mode interp_mode = ai2d_interp_mode::none;
}

【参数】

名称

类型

描述

resize_flag

bool

是否开启resize功能

interp_method

ai2d_interp_method

resize插值方法

interp_mode

ai2d_interp_mode

resize模式

【示例】

ai2d_resize_param_t resize_param { true, ai2d_interp_method::tf_bilinear, ai2d_interp_mode::half_pixel };

5.2.10 ai2d_affine_param_t#

【描述】

ai2d_affine_param_t 用于配置affine相关的参数。

【定义】

struct ai2d_affine_param_t
{
    bool affine_flag = false;
    ai2d_interp_method interp_method = ai2d_interp_method::cv2_bilinear;
    uint32_t cord_round = 0;
    uint32_t bound_ind = 0;
    int32_t bound_val = 0;
    uint32_t bound_smooth = 0;
    std::vector<float> M;
}

【参数】

名称

类型

描述

affine_flag

bool

是否开启affine功能

interp_method

ai2d_interp_method

Affine采用的插值方法

cord_round

uint32_t

整数边界0或者1

bound_ind

uint32_t

边界像素模式0或者1

bound_val

uint32_t

边界填充值

bound_smooth

uint32_t

边界平滑0或者1

M

std::vector<float>

仿射变换矩阵对应的vector,仿射变换为$Y=[a_0, a_1; a_2, a_3] \cdot X + [b_0, b_1] $, 则 $ M={a_0,a_1,b_0,a_2,a_3,b_1} $

【示例】

ai2d_affine_param_t affine_param { true, ai2d_interp_method::cv2_bilinear, 0, 0, 127, 1, { 0.5, 0.1, 0.0, 0.1, 0.5, 0.0 } };

5.2.11 ai2d_builder:: ai2d_builder#

【描述】

ai2d_builder的构造函数。

【定义】

ai2d_builder(dims_t &input_shape, dims_t &output_shape, ai2d_datatype_t ai2d_dtype, ai2d_crop_param_t crop_param, ai2d_shift_param_t shift_param, ai2d_pad_param_t pad_param, ai2d_resize_param_t resize_param, ai2d_affine_param_t affine_param);

【参数】

名称

类型

描述

input_shape

dims_t

输入形状

output_shape

dims_t

输出形状

ai2d_dtype

ai2d_datatype_t

ai2d数据类型

crop_param

ai2d_crop_param_t

crop相关参数

shift_param

ai2d_shift_param_t

shift相关参数

pad_param

ai2d_pad_param_t

pad相关参数

resize_param

ai2d_resize_param_t

resize相关参数

affine_param

ai2d_affine_param_t

affine相关参数

【返回值 】

【示例】

dims_t in_shape { 1, ai2d_input_c_, ai2d_input_h_, ai2d_input_w_ };          
auto out_span = ai2d_out_tensor_.shape();                                    
dims_t out_shape { out_span.begin(), out_span.end() };                       
ai2d_datatype_t ai2d_dtype { ai2d_format::NCHW_FMT, ai2d_format::NCHW_FMT, typecode_t::dt_uint8, typecode_t::dt_uint8 };
ai2d_crop_param_t crop_param { false, 0, 0, 0, 0 };                          
ai2d_shift_param_t shift_param { false, 0 };                                 
ai2d_pad_param_t pad_param { true, { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 70, 70 } }, ai2d_pad_mode::constant, { 0, 0, 0 } };
ai2d_resize_param_t resize_param { true, ai2d_interp_method::tf_bilinear, ai2d_interp_mode::half_pixel };
ai2d_affine_param_t affine_param { false };                                  
ai2d_builder_.reset(new ai2d_builder(in_shape, out_shape, ai2d_dtype, crop_param, shift_param, pad_param, resize_param, affine_param));

5.2.12 ai2d_builder:: build_schedule#

【描述】

生成AI2D计算需要的参数。

【定义】

result<void> build_schedule();

【参数】

无。

【返回值】

result<void>

【示例】

ai2d_builder_->build_schedule();

5.2.13 ai2d_builder:: invoke#

【描述】

配置寄存器并启动AI2D的计算。

【定义】

result<void> invoke(runtime_tensor &input, runtime_tensor &output);

【参数】

名称

类型

描述

input

runtime_tensor

输入tensor

output

runtime_tensor

输出tensor

【返回值 】

result<void>。

【示例】

// run ai2d                                                                  
ai2d_builder_->invoke(ai2d_in_tensor, ai2d_out_tensor_).expect("error occurred in ai2d running");

5.3 示例#

static void test_pad_mini_test(const char *gmodel_file, const char *expect_file)
{
    // input tensor
    dims_t in_shape { 1, 100, 150, 3 };
    auto in_tensor = host_runtime_tensor::create(dt_uint8, in_shape, hrt::pool_shared).expect("cannot create input tensor");
    auto mapped_in_buf = std::move(hrt::map(in_tensor, map_access_t::map_write).unwrap());
    read_binary_file(gmodel_file, reinterpret_cast<char *>(mapped_in_buf.buffer().data()));
    mapped_in_buf.unmap().expect("unmap input tensor failed");
    hrt::sync(in_tensor, sync_op_t::sync_write_back, true).expect("write back input failed");

    // output tensor
    dims_t out_shape { 1, 100, 160, 3 };
    auto out_tensor = host_runtime_tensor::create(dt_uint8, out_shape, hrt::pool_shared).expect("cannot create output tensor");

    // config ai2d
    ai2d_datatype_t ai2d_dtype { ai2d_format::RGB_packed, ai2d_format::RGB_packed, dt_uint8, dt_uint8 };
    ai2d_crop_param_t crop_param { false, 0, 0, 0, 0 };
    ai2d_shift_param_t shift_param { false, 0 };
    ai2d_pad_param_t pad_param { true, { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 10, 0 } }, ai2d_pad_mode::constant, { 255, 10, 5 } };
    ai2d_resize_param_t resize_param { false, ai2d_interp_method::tf_bilinear, ai2d_interp_mode::half_pixel };
    ai2d_affine_param_t affine_param { false };

    // run
    ai2d_builder builder { in_shape, out_shape, ai2d_dtype, crop_param, shift_param, pad_param, resize_param, affine_param };
    auto start = std::chrono::steady_clock::now();
    builder.build_schedule().expect("error occurred in ai2d build_schedule");
    builder.invoke(in_tensor, out_tensor).expect("error occurred in ai2d invoke");
    auto stop = std::chrono::steady_clock::now();
    double duration = std::chrono::duration<double, std::milli>(stop - start).count();
    std::cout << "ai2d run: duration = " << duration << " ms, fps = " << 1000 / duration << std::endl;

    // compare
    auto mapped_out_buf = std::move(hrt::map(out_tensor, map_access_t::map_read).unwrap());
    auto actual = mapped_out_buf.buffer().data();
    auto expected = read_binary_file<unsigned char>(expect_file);
    int ret = memcmp(reinterpret_cast<void *>(actual), reinterpret_cast<void *>(expected.data()), expected.size());
    if (!ret)
    {
        std::cout << "compare output succeed!" << std::endl;
    }
    else
    {
        auto cos = cosine(reinterpret_cast<const uint8_t *>(actual), reinterpret_cast<const uint8_t *>(expected.data()), expected.size());
        std::cerr << "compare output failed: cosine similarity = " << cos << std::endl;
    }
}

5.4 注意事项#

  1. Affine和Resize功能是互斥的,不能同时开启;

  2. Shift功能的输入格式只能是Raw16;

  3. Pad value是按通道配置的,对应的list元素个数要与channel数相等;

  4. 当前版本中,当只需要AI2D的一个功能时,其他参数也需要配置,flag置为false即可,其他字段不用配置;

  5. 当配置了多个功能时,执行顺序是Crop->Shift->Resize/Affine->Pad, 配置参数时注意要匹配。