5. 快速入门k230 AI推理流程#

本章介绍了K230 AI推理的完整流程,让大家对基于K230的AI推理过程有个大概印象,它包括视频采集,图像预处理,模型推理、后处理、显示等过程。

  • 视频输入:VI(Video Input),视频采集

  • 视频输出:VO(Video Output),显示

本章包含了K230 AI推理流程的两种实现:基于OpenCV(c++)的AI推理、基于ulab(MicroPython)的AI推理,分别对应两个子章节,具体实现详子章节介绍。

详细代码实现k230_AI_Demo_Code_Flow_Introduction

5.1 基于OpenCV(C++)的AI推理流程#

基于OpenCV(C++)的K230 AI推理,简要介绍了使用c++语言实现的视频采集,图像预处理(OpenCV),模型推理、后处理、显示等过程。

5.1.1 视频采集#

视频采集:(视频输入,VI)与摄像头相关,本小节简要介绍基于c++的摄像头设置、摄像头启动、从摄像头中获取一帧数据、摄像头停止的整体流程;详细介绍见K230_VICAP_API参考.mdK230_VICAP_SENSOR_参数分区参考.mdK230_Camera_Sensor适配指南.md

1. 设置摄像头属性

  • 设置的sensor两路输出;

  • 一路输出用于显示,输出大小设置1080p,图像格式为PIXEL_FORMAT_YVU_PLANAR_420,直接绑定到vo;

  • 另一路输出用于AI计算,输出大小720p,图像格式为PIXEL_FORMAT_BGR_888_PLANAR(实际为rgb,chw,uint8);

创建摄像头(sensor)输出缓存(VB):用于存放摄像头两路输出

//vi_vo.h
/***************************unfixed:不同AI Demo可能需要修改***********************/
#define SENSOR_CHANNEL (3)     // 通道数
#define SENSOR_HEIGHT (720)    // sensor ch1输出高度,AI输入
#define SENSOR_WIDTH (1280)    // sensor ch1输出宽度,AI输入
#define ISP_CHN0_WIDTH  (1920) // sensor ch0输出宽度,vo
#define ISP_CHN0_HEIGHT (1080) // sensor ch0输出高度,vo
/*****************************************************************************/

/***************************fixed:无需修改***********************************/
memset(&config, 0, sizeof(config));
config.max_pool_cnt = 64;
//VB for YUV420SP output
config.comm_pool[0].blk_cnt = 5;
config.comm_pool[0].mode = VB_REMAP_MODE_NOCACHE;
config.comm_pool[0].blk_size = VICAP_ALIGN_UP((ISP_CHN0_WIDTH * ISP_CHN0_HEIGHT * 3 / 2), VICAP_ALIGN_1K);

//VB for RGB888 output
config.comm_pool[1].blk_cnt = 5;
config.comm_pool[1].mode = VB_REMAP_MODE_NOCACHE;
config.comm_pool[1].blk_size = VICAP_ALIGN_UP((SENSOR_HEIGHT * SENSOR_WIDTH * 3 ), VICAP_ALIGN_1K);

ret = kd_mpi_vb_set_config(&config);
if (ret) {
    printf("vb_set_config failed ret:%d\n", ret);
    return ret;
}
/*****************************************************************************/

设置摄像头属性:设置sensor_type;一般无需换摄像头,无需修改。

//vi_vo.h
/***************************fixed:无需修改***********************************/
vicap_dev = VICAP_DEV_ID_0;
ret = kd_mpi_vicap_get_sensor_info(sensor_type, &sensor_info);
if (ret) {
    printf("sample_vicap, the sensor type not supported!\n");
    return ret;
}

......

dev_attr.cpature_frame = 0;
memcpy(&dev_attr.sensor_info, &sensor_info, sizeof(k_vicap_sensor_info));

ret = kd_mpi_vicap_set_dev_attr(vicap_dev, dev_attr);
if (ret) {
    printf("sample_vicap, kd_mpi_vicap_set_dev_attr failed.\n");
    return ret;
}
/*****************************************************************************/

设置摄像头通道0属性:设置摄像头通道0分辨率为1080p,格式为PIXEL_FORMAT_YVU_PLANAR_420;并将摄像头通道0绑定到显示;一般只需要关注chn_attr.out_win.widthchn_attr.out_win.heightchn_attr.pix_format即可,其它不用修改。

//vi_vo.h
/***************************unfixed:不同AI Demo可能需要修改***********************/
#define ISP_CHN0_WIDTH  (1920) // sensor ch0输出宽度,vo
#define ISP_CHN0_HEIGHT (1080) // sensor ch0输出高度,vo
/*****************************************************************************/

/***************************unfixed:不同AI Demo可能需要修改******************/
//set chn0 output yuv420sp
......
chn_attr.out_win.width = ISP_CHN0_WIDTH;
chn_attr.out_win.height = ISP_CHN0_HEIGHT;
......
chn_attr.chn_enable = K_TRUE;
chn_attr.pix_format = PIXEL_FORMAT_YVU_PLANAR_420;
/*****************************************************************************/ 
......
/***************************fixed:无需修改***********************************/
chn_attr.buffer_num = VICAP_MAX_FRAME_COUNT;        //at least 3 buffers for isp
chn_attr.buffer_size = config.comm_pool[0].blk_size;
vicap_chn = VICAP_CHN_ID_0;

printf("sample_vicap ...kd_mpi_vicap_set_chn_attr, buffer_size[%d]\n", chn_attr.buffer_size);
ret = kd_mpi_vicap_set_chn_attr(vicap_dev, vicap_chn, chn_attr);
if (ret) {
    printf("sample_vicap, kd_mpi_vicap_set_chn_attr failed.\n");
    return ret;
}

//bind vicap chn 0 to vo
vicap_mpp_chn.mod_id = K_ID_VI;
vicap_mpp_chn.dev_id = vicap_dev;
vicap_mpp_chn.chn_id = vicap_chn;

vo_mpp_chn.mod_id = K_ID_VO;
vo_mpp_chn.dev_id = K_VO_DISPLAY_DEV_ID;
vo_mpp_chn.chn_id = K_VO_DISPLAY_CHN_ID1;

sample_vicap_bind_vo(vicap_mpp_chn, vo_mpp_chn);
printf("sample_vicap ...dwc_dsi_init\n");
/*****************************************************************************/

**设置摄像头通道1属性:**设置通道1分辨率为720p,格式为PIXEL_FORMAT_BGR_888_PLANAR。

//vi_vo.h
/***************************unfixed:不同AI Demo可能需要修改***********************/
#define SENSOR_CHANNEL (3)     // 通道数
#define SENSOR_HEIGHT (720)    // sensor ch1输出高度,AI输入
#define SENSOR_WIDTH (1280)    // sensor ch1输出宽度,AI输入
/*****************************************************************************/
......
/***************************unfixed:不同AI Demo可能需要修改******************/
//set chn1 output rgb888p
....
chn_attr.out_win.width = SENSOR_WIDTH ;
chn_attr.out_win.height = SENSOR_HEIGHT;

......
chn_attr.chn_enable = K_TRUE;
chn_attr.pix_format = PIXEL_FORMAT_BGR_888_PLANAR;
/*****************************************************************************/ 

/***************************fixed:无需修改***********************************/
chn_attr.buffer_num = VICAP_MAX_FRAME_COUNT;//at least 3 buffers for isp
chn_attr.buffer_size = config.comm_pool[1].blk_size;

printf("sample_vicap ...kd_mpi_vicap_set_chn_attr, buffer_size[%d]\n", chn_attr.buffer_size);
ret = kd_mpi_vicap_set_chn_attr(vicap_dev, VICAP_CHN_ID_1, chn_attr);
if (ret) {
    printf("sample_vicap, kd_mpi_vicap_set_chn_attr failed.\n");
    return ret;
}
/*****************************************************************************/

设置初始化、并启动摄像头:

//vi_vo.h
/***************************fixed:无需修改***********************************/
ret = kd_mpi_vicap_init(vicap_dev);
if (ret) {
    printf("sample_vicap, kd_mpi_vicap_init failed.\n");
    // goto err_exit;
}

printf("sample_vicap ...kd_mpi_vicap_start_stream\n");
ret = kd_mpi_vicap_start_stream(vicap_dev);
if (ret) {
    printf("sample_vicap, kd_mpi_vicap_init failed.\n");
    // goto err_exit;
}
/*****************************************************************************/

使用示例

//main.cc
vivcap_start();

2. 获取摄像头图像

摄像头数据临时地址:创建vaddr,临时存放摄像头最新数据,它与摄像头通道1大小相同。

// main.cc
/***************************fixed:无需修改***********************************/
// alloc memory for sensor
size_t paddr = 0;
void *vaddr = nullptr;
size_t size = SENSOR_CHANNEL * SENSOR_HEIGHT * SENSOR_WIDTH;
int ret = kd_mpi_sys_mmz_alloc_cached(&paddr, &vaddr, "allocate", "anonymous", size);
if (ret)
{
    std::cerr << "physical_memory_block::allocate failed: ret = " << ret << ", errno = " << strerror(errno) << std::endl;
    std::abort();
}
/*****************************************************************************/

读取最新帧

  • dump:从摄像头通道1读取一帧图像,即从VB中dump一帧数据到dump_info

  • 映射:将dump_info对应DDR地址(物理地址)映射到当前系统地址(虚拟地址)进行访问

  • 转cv::Mat:将摄像头数据转换为cv::Mat,sensor(rgb,chw)->cv::Mat(bgr,hwc);将摄像头数据转换为为cv::Mat不是必须的,这里只是为了以大家比较熟悉的方式(cv::Mat)进行讲解。

//vi_vo.h
/***************************fixed:无需修改***********************************/
//VB for RGB888 output
config.comm_pool[1].blk_cnt = 5;
config.comm_pool[1].mode = VB_REMAP_MODE_NOCACHE;
config.comm_pool[1].blk_size = VICAP_ALIGN_UP((SENSOR_HEIGHT * SENSOR_WIDTH * 3 ), VICAP_ALIGN_1K);
/*****************************************************************************/

//main.cc
while (!isp_stop)
{
    cv::Mat ori_img;
    //sensor to cv::Mat
    {
        /***************************fixed:无需修改***********************************/
        //从摄像头通道1读取一帧图像,即从VB中dump一帧数据到dump_info
        memset(&dump_info, 0 , sizeof(k_video_frame_info));
        ret = kd_mpi_vicap_dump_frame(vicap_dev, VICAP_CHN_ID_1, VICAP_DUMP_YUV, &dump_info, 1000);
        if (ret) {
            printf("sample_vicap...kd_mpi_vicap_dump_frame failed.\n");
            continue;
        }

        //将dump_info对应DDR地址(物理地址)映射到当前系统(虚拟地址)进行访问
        //vbvaddr是实时改变的,因此我们最好把最新数据拷贝到【固定地址】vaddr,以便其它部分进行访问
        auto vbvaddr = kd_mpi_sys_mmap_cached(dump_info.v_frame.phys_addr[0], size);
        memcpy(vaddr, (void *)vbvaddr, SENSOR_HEIGHT * SENSOR_WIDTH * 3); 
        kd_mpi_sys_munmap(vbvaddr, size);
        /*****************************************************************************/
        
        //将摄像头数据转换为为cv::Mat,sensor(rgb,chw)->cv::Mat(bgr,hwc)
        cv::Mat image_r = cv::Mat(SENSOR_HEIGHT,SENSOR_WIDTH, CV_8UC1, vaddr);
        cv::Mat image_g = cv::Mat(SENSOR_HEIGHT,SENSOR_WIDTH, CV_8UC1, vaddr+SENSOR_HEIGHT*SENSOR_WIDTH);
        cv::Mat image_b = cv::Mat(SENSOR_HEIGHT,SENSOR_WIDTH, CV_8UC1, vaddr+2*SENSOR_HEIGHT*SENSOR_WIDTH);
        std::vector<cv::Mat> color_vec(3);
        color_vec.clear();
        color_vec.push_back(image_b);
        color_vec.push_back(image_g);
        color_vec.push_back(image_r);
        cv::merge(color_vec, ori_img);
    }
    //使用当前帧数据
    ......
    ......
    {
        /***************************fixed:无需修改***********************************/
        // 释放sensor当前帧
        ret = kd_mpi_vicap_dump_release(vicap_dev, VICAP_CHN_ID_1, &dump_info);
        if (ret) {
            printf("sample_vicap...kd_mpi_vicap_dump_release failed.\n");
        }
        /*****************************************************************************/
    }
}

3. 停止摄像头

//vi_vo.h
/***************************fixed:无需修改***********************************/
int vivcap_stop()
{
    // 摄像头停止
    printf("sample_vicap ...kd_mpi_vicap_stop_stream\n");
    int ret = kd_mpi_vicap_stop_stream(vicap_dev);
    if (ret) {
        printf("sample_vicap, kd_mpi_vicap_init failed.\n");
        return ret;
    }

    // 摄像头资源释放
    ret = kd_mpi_vicap_deinit(vicap_dev);
    if (ret) {
        printf("sample_vicap, kd_mpi_vicap_deinit failed.\n");
        return ret;
    }

    kd_mpi_vo_disable_video_layer(K_VO_LAYER1);

    vicap_mpp_chn.mod_id = K_ID_VI;
    vicap_mpp_chn.dev_id = vicap_dev;
    vicap_mpp_chn.chn_id = vicap_chn;

    vo_mpp_chn.mod_id = K_ID_VO;
    vo_mpp_chn.dev_id = K_VO_DISPLAY_DEV_ID;
    vo_mpp_chn.chn_id = K_VO_DISPLAY_CHN_ID1;

    // vi vo解绑
    sample_vicap_unbind_vo(vicap_mpp_chn, vo_mpp_chn);

    /*Allow one frame time for the VO to release the VB block*/
    k_u32 display_ms = 1000 / 33;
    usleep(1000 * display_ms);

    // 退出vb
    ret = kd_mpi_vb_exit();
    if (ret) {
        printf("sample_vicap, kd_mpi_vb_exit failed.\n");
        return ret;
    }

    return 0;
}
/*****************************************************************************/

只需在main.cc中调用:

//main.cc
vivcap_start();
......
vivcap_stop();

5.1.2 预处理#

对当前帧数据进行resize处理。

//main.cc
while (!isp_stop)
{
    cv::Mat ori_img;        //ori:uint8,chw,rgb
    //sensor to cv::Mat
    {
        ......
    }
    /***************************unfixed:不同AI Demo可能需要修改******************/
    // pre_process,cv::Mat((1280,720),bgr,hwc)->kmodel((224,224),rgb,hwc)
    cv::Mat pre_process_img;
    {
        cv::Mat rgb_img;
        cv::cvtColor(ori_img, rgb_img, cv::COLOR_BGR2RGB);
        cv::resize(rgb_img, pre_process_img, cv::Size(kmodel_input_width, kmodel_input_height), cv::INTER_LINEAR);
    }
    /*****************************************************************************/

    //已在ai_base.cc中给出通用实现,并且将在第6章给出开源代码
    /***************************fixed:无需修改***********************************/
    // set kmodel input
    {
        runtime_tensor tensor0 = kmodel_interp.input_tensor(0).expect("cannot get input tensor");
        auto in_buf = tensor0.impl()->to_host().unwrap()->buffer().as_host().unwrap().map(map_access_::map_write).unwrap().buffer();
        memcpy(reinterpret_cast<unsigned char *>(in_buf.data()), pre_process_img.data,sizeof(uint8_t)* kmodel_input_height * kmodel_input_width * 3);
        hrt::sync(tensor0, sync_op_t::sync_write_back, true).expect("sync write_back failed");
    }
    /*****************************************************************************/ 
    ......
}

5.1.3 模型推理#

设置好模型输入后,进行模型推理,得到模型推理结果。

//main.cc
string kmodel_path = argv[1];
cout<<kmodel_path<<endl;
float cls_thresh=0.5;

//已在ai_base.cc中给出通用实现,并且将在第6章给出开源代码
/***************************fixed:无需修改***********************************/
// kmodel解释器,从kmodel文件构建,负责模型的加载、输入输出设置和推理
interpreter kmodel_interp;        
// load model
std::ifstream ifs(kmodel_path, std::ios::binary);
kmodel_interp.load_model(ifs).expect("Invalid kmodel");

// inputs init
for (size_t i = 0; i < kmodel_interp.inputs_size(); i++)
{
    auto desc = kmodel_interp.input_desc(i);
    auto shape = kmodel_interp.input_shape(i);
    auto tensor = host_runtime_tensor::create(desc.datatype, shape, hrt::pool_shared).expect("cannot create input tensor");
    kmodel_interp.input_tensor(i, tensor).expect("cannot set input tensor");
} 
auto shape0 = kmodel_interp.input_shape(0);      //nhwc
int kmodel_input_height = shape0[1];
int kmodel_input_width = shape0[2];

// outputs init
for (size_t i = 0; i < kmodel_interp.outputs_size(); i++)
{
    auto desc = kmodel_interp.output_desc(i);
    auto shape = kmodel_interp.output_shape(i);
    auto tensor = host_runtime_tensor::create(desc.datatype, shape, hrt::pool_shared).expect("cannot create output tensor");
    kmodel_interp.output_tensor(i, tensor).expect("cannot set output tensor");
}
/*****************************************************************************/ 
    
while (!isp_stop)
{
    cv::Mat ori_img;
    //sensor to cv::Mat
    {
        ......
    }

    // pre_process
    cv::Mat pre_process_img;
    {
        ......
    }

    // set kmodel input
    {
        ......
    }

    //已在ai_base.cc中给出通用实现,并且将在第6章给出开源代码
    /***************************fixed:无需修改***********************************/
    // kmodel run
    kmodel_interp.run().expect("error occurred in running model");

    // get kmodel output
    vector<float *> k_outputs;
    {
        for (int i = 0; i < kmodel_interp.outputs_size(); i++)
        {
            auto out = kmodel_interp.output_tensor(i).expect("cannot get output tensor");
            auto buf = out.impl()->to_host().unwrap()->buffer().as_host().unwrap().map(map_access_::map_read).unwrap().buffer();
            float *p_out = reinterpret_cast<float *>(buf.data());
            k_outputs.push_back(p_out);
        }
    }
    /*****************************************************************************/
}

5.1.4 后处理#

对模型结果进行后处理,并结果放到results中。

//main.cc
vector<cls_res> results;
while (!isp_stop)
{
    cv::Mat ori_img;
    //sensor to cv::Mat
    {
        ......
    }

    // pre_process
    cv::Mat pre_process_img;
    {
        ......
    }

    // set kmodel input
    {
        ......
    }

    // kmodel run
    ......

    // get kmodel output
    vector<float *> k_outputs;
    {
        ......
    }

    //post process
    results.clear();
    {
        /***************************unfixed:不同AI Demo可能需要修改******************/
        float* output0 = k_outputs[0];
        //softmax
        float sum = 0.0;
        for (int i = 0; i < labels.size(); i++){
            sum += exp(output0[i]);
        }

        int max_index;
        for (int i = 0; i < labels.size(); i++)
        {
            output0[i] = exp(output0[i]) / sum;
        }
        max_index = std::max_element(output0,output0+labels.size()) - output0; 
        cls_res b;
        if (output0[max_index] >= cls_thresh)
        {
            b.label = labels[max_index];
            b.score = output0[max_index];
            results.push_back(b);
        }
        /*****************************************************************************/   
    }
}

5.1.5 显示#

显示(视频输出,VO)与display相关,本小节简要介绍基于c++的显示设置、显示叠加的整体流程;详细介绍参见K230_视频输出_API参考.md

  • 显示设置:设置显示大小,格式

  • 显示叠加:显示由2个图层构成,其中下边的图层(原图图层)直接显示摄像头输出,上边的图层(osd图层)用于画框、画点,写文字等。

1. 显示设置:设置显示大小,格式。

//vi_vo.h
/***************************fixed:无需修改***********************************/
static k_s32 sample_connector_init(void)
{
    ......
    k_connector_type connector_type = LT9611_MIPI_4LAN_1920X1080_30FPS;
    ......
}

static k_s32 vo_layer_vdss_bind_vo_config(void)
{
    ......
    sample_connector_init();

    // config lyaer
    info.act_size.width = ISP_CHN0_WIDTH;//ISP_CHN0_HEIGHT;//1080;//640;//1080;
    info.act_size.height = ISP_CHN0_HEIGHT;//ISP_CHN0_WIDTH;//1920;//480;//1920;
    info.format = PIXEL_FORMAT_YVU_PLANAR_420;
    ......
}
/*****************************************************************************/ 

2. 显示叠加:由于摄像头和显示的通道进行了绑定,我们无法对vo进行直接操作,因此采用叠加的方式进行显示。

原图图层:由于摄像头(vi)通道0绑定了显示(vo)的通道1;随着摄像头的启动,摄像头通道0的数据会自动流到vo的通道1。

//vi_vo.h
......
/***************************fixed:无需修改***********************************/
//bind vicap chn 0 to vo
vicap_mpp_chn.mod_id = K_ID_VI;
vicap_mpp_chn.dev_id = vicap_dev;
vicap_mpp_chn.chn_id = vicap_chn;

vo_mpp_chn.mod_id = K_ID_VO;
vo_mpp_chn.dev_id = K_VO_DISPLAY_DEV_ID;
vo_mpp_chn.chn_id = K_VO_DISPLAY_CHN_ID1;

sample_vicap_bind_vo(vicap_mpp_chn, vo_mpp_chn);
printf("sample_vicap ...dwc_dsi_init\n");
/*****************************************************************************/ 
......

osd图层:cv::Mat上画框、画点、写文字之后,将数据插入vo对应通道。

// vi_vo.h
#define osd_id                              K_VO_OSD3
/***************************unfixed:不同AI Demo可能需要修改******************/
#define ISP_CHN0_WIDTH                      (1920) // sensor ch0输出宽度,vo
#define ISP_CHN0_HEIGHT                     (1080) // sensor ch0输出高度,vo
#define osd_width                           (1920)
#define osd_height                          (1080)
/*****************************************************************************/
.....
/***************************fixed:无需修改***********************************/
k_vb_blk_handle vo_insert_frame(k_video_frame_info *vf_info, void **pic_vaddr)
{
    k_u64 phys_addr = 0;
    k_u32 *virt_addr;
    k_vb_blk_handle handle;
    k_s32 size;

    if (vf_info == NULL)
        return K_FALSE;

    if (vf_info->v_frame.pixel_format == PIXEL_FORMAT_ABGR_8888 || vf_info->v_frame.pixel_format == PIXEL_FORMAT_ARGB_8888)
        size = vf_info->v_frame.height * vf_info->v_frame.width * 4;
    else if (vf_info->v_frame.pixel_format == PIXEL_FORMAT_RGB_565 || vf_info->v_frame.pixel_format == PIXEL_FORMAT_BGR_565)
        size = vf_info->v_frame.height * vf_info->v_frame.width * 2;
    else if (vf_info->v_frame.pixel_format == PIXEL_FORMAT_ABGR_4444 || vf_info->v_frame.pixel_format == PIXEL_FORMAT_ARGB_4444)
        size = vf_info->v_frame.height * vf_info->v_frame.width * 2;
    else if (vf_info->v_frame.pixel_format == PIXEL_FORMAT_RGB_888 || vf_info->v_frame.pixel_format == PIXEL_FORMAT_BGR_888)
        size = vf_info->v_frame.height * vf_info->v_frame.width * 3;
    else if (vf_info->v_frame.pixel_format == PIXEL_FORMAT_ARGB_1555 || vf_info->v_frame.pixel_format == PIXEL_FORMAT_ABGR_1555)
        size = vf_info->v_frame.height * vf_info->v_frame.width * 2;
    else if (vf_info->v_frame.pixel_format == PIXEL_FORMAT_YVU_PLANAR_420)
        size = vf_info->v_frame.height * vf_info->v_frame.width * 3 / 2;

    size = size + 4096;         // 强制4K ,后边得删了

    printf("vb block size is %x \n", size);

    handle = kd_mpi_vb_get_block(g_pool_id, size, NULL);
    if (handle == VB_INVALID_HANDLE)
    {
        printf("%s get vb block error\n", __func__);
        return K_FAILED;
    }

    phys_addr = kd_mpi_vb_handle_to_phyaddr(handle);
    if (phys_addr == 0)
    {
        printf("%s get phys addr error\n", __func__);
        return K_FAILED;
    }

    virt_addr = (k_u32 *)kd_mpi_sys_mmap(phys_addr, size);
    // virt_addr = (k_u32 *)kd_mpi_sys_mmap_cached(phys_addr, size);

    if (virt_addr == NULL)
    {
        printf("%s mmap error\n", __func__);
        return K_FAILED;
    }

    vf_info->mod_id = K_ID_VO;
    vf_info->pool_id = g_pool_id;
    vf_info->v_frame.phys_addr[0] = phys_addr;
    if (vf_info->v_frame.pixel_format == PIXEL_FORMAT_YVU_PLANAR_420)
        vf_info->v_frame.phys_addr[1] = phys_addr + (vf_info->v_frame.height * vf_info->v_frame.stride[0]);
    *pic_vaddr = virt_addr;

    printf("phys_addr is %lx g_pool_id is %d \n", phys_addr, g_pool_id);

    return handle;
}
/*****************************************************************************/

使用示例

// main.cc
/***************************fixed:无需修改***********************************/
// osd create
k_video_frame_info vf_info;
void *pic_vaddr = NULL;       
memset(&vf_info, 0, sizeof(vf_info));
vf_info.v_frame.width = osd_width;
vf_info.v_frame.height = osd_height;
vf_info.v_frame.stride[0] = osd_width;
vf_info.v_frame.pixel_format = PIXEL_FORMAT_ARGB_8888;
block = vo_insert_frame(&vf_info, &pic_vaddr);
/*****************************************************************************/ 

while (!isp_stop)
{
    cv::Mat ori_img;
    // sensor to cv::Mat
    // pre_process
    // set kmodel input
    // kmodel run
    // get kmodel output
    // post process
    results.clear();
    {
        ......
    }

    // draw result to vo
    {
        // draw osd
        {
            cv::Mat osd_frame(osd_height, osd_width, CV_8UC4, cv::Scalar(0, 0, 0, 0));
            /***************************unfixed:不同AI Demo可能需要修改******************/
            {
                //draw cls
                double fontsize = (osd_frame.cols * osd_frame.rows * 1.0) / (1100 * 1200);
                for(int i = 0; i < results.size(); i++)
                {   
                    std::string text = "class: " + results[i].label + ", score: " + std::to_string(round(results[i].score * 100) / 100.0).substr(0, 4);

                    cv::putText(osd_frame, text, cv::Point(1, 40), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(255, 255, 255, 0), 2);

                    std::cout << text << std::endl;
                }
            }
            
            /*************************************************************************/
            
            /***************************fixed:无需修改***********************************/
            memcpy(pic_vaddr, osd_frame.data, osd_width * osd_height * 4);
        }

        // insert osd to vo
        {
            kd_mpi_vo_chn_insert_frame(osd_id+3, &vf_info);
            printf("kd_mpi_vo_chn_insert_frame success \n");
        }
        /*****************************************************************************/ 
    }
    ......
}

5.1.6 完整代码#

具体怎么操作运行,请参考第6章,这里着重介绍代码流程。

vi_vo.h

/* Copyright (c) 2023, Canaan Bright Sight Co., Ltd
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <chrono>
#include <fstream>
#include <iostream>
#include <thread>
#include <atomic>

#include "mpi_sys_api.h"

/* vicap */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/mman.h>

#include "k_module.h"
#include "k_type.h"
#include "k_vb_comm.h"
#include "k_video_comm.h"
#include "k_sys_comm.h"
#include "mpi_vb_api.h"
#include "mpi_vicap_api.h"
#include "mpi_isp_api.h"
#include "mpi_sys_api.h"
#include "k_vo_comm.h"
#include "mpi_vo_api.h"

#include "vo_test_case.h"

#include "k_connector_comm.h"
#include "mpi_connector_api.h"
#include "k_autoconf_comm.h"

/***************************unfixed:不同AI Demo可能需要修改*******************/
#if defined(CONFIG_BOARD_K230_CANMV)
#define SENSOR_CHANNEL (3)                // 通道数
#define SENSOR_HEIGHT (720)               // sensor ch1输出高度,AI输入
#define SENSOR_WIDTH (1280)               // sensor ch1输出宽度,AI输入
#define ISP_CHN0_WIDTH  (1920)            // sensor ch0输出宽度,vo
#define ISP_CHN0_HEIGHT (1080)            // sensor ch0输出高度,vo
#define vicap_install_osd                   (1)
#define osd_id                              K_VO_OSD3
#define osd_width                           (1920)
#define osd_height                          (1080)
#else
#define SENSOR_CHANNEL (3)                
#define SENSOR_HEIGHT (1280)  
#define SENSOR_WIDTH (720)   
#define ISP_CHN0_WIDTH  (1088)
#define ISP_CHN0_HEIGHT (1920)
#define vicap_install_osd                   (1)
#define osd_id                              K_VO_OSD3
#define osd_width                           (1080)
#define osd_height                          (1920)
#endif
/*****************************************************************************/    

/***************************fixed:无需修改***********************************/
k_vb_config config;
k_vicap_dev vicap_dev;
k_vicap_chn vicap_chn;
k_vicap_dev_attr dev_attr;
k_vicap_chn_attr chn_attr;
k_vicap_sensor_info sensor_info;
k_vicap_sensor_type sensor_type;
k_mpp_chn vicap_mpp_chn;
k_mpp_chn vo_mpp_chn;

k_video_frame_info dump_info;

k_vo_draw_frame vo_frame = (k_vo_draw_frame) {
    1,
    16,
    16,
    128,
    128,
    1
};

static k_vb_blk_handle block;
k_u32 g_pool_id;

int vo_creat_layer_test(k_vo_layer chn_id, layer_info *info)
{
    k_vo_video_layer_attr attr;

    // check layer
    if ((chn_id >= K_MAX_VO_LAYER_NUM) || ((info->func & K_VO_SCALER_ENABLE) && (chn_id != K_VO_LAYER0))
            || ((info->func != 0) && (chn_id == K_VO_LAYER2)))
    {
        printf("input layer num failed \n");
        return -1 ;
    }

    // check scaler

    // set offset
    attr.display_rect = info->offset;
    // set act
    attr.img_size = info->act_size;
    // sget size
    info->size = info->act_size.height * info->act_size.width * 3 / 2;
    //set pixel format
    attr.pixel_format = info->format;
    if (info->format != PIXEL_FORMAT_YVU_PLANAR_420)
    {
        printf("input pix format failed \n");
        return -1;
    }
    // set stride
    attr.stride = (info->act_size.width / 8 - 1) + ((info->act_size.height - 1) << 16);
    // set function
    attr.func = info->func;
    // set scaler attr
    attr.scaler_attr = info->attr;

    // set video layer atrr
    kd_mpi_vo_set_video_layer_attr(chn_id, &attr);

    // enable layer
    kd_mpi_vo_enable_video_layer(chn_id);

    return 0;
}

k_vb_blk_handle vo_insert_frame(k_video_frame_info *vf_info, void **pic_vaddr)
{
    k_u64 phys_addr = 0;
    k_u32 *virt_addr;
    k_vb_blk_handle handle;
    k_s32 size;

    if (vf_info == NULL)
        return K_FALSE;

    if (vf_info->v_frame.pixel_format == PIXEL_FORMAT_ABGR_8888 || vf_info->v_frame.pixel_format == PIXEL_FORMAT_ARGB_8888)
        size = vf_info->v_frame.height * vf_info->v_frame.width * 4;
    else if (vf_info->v_frame.pixel_format == PIXEL_FORMAT_RGB_565 || vf_info->v_frame.pixel_format == PIXEL_FORMAT_BGR_565)
        size = vf_info->v_frame.height * vf_info->v_frame.width * 2;
    else if (vf_info->v_frame.pixel_format == PIXEL_FORMAT_ABGR_4444 || vf_info->v_frame.pixel_format == PIXEL_FORMAT_ARGB_4444)
        size = vf_info->v_frame.height * vf_info->v_frame.width * 2;
    else if (vf_info->v_frame.pixel_format == PIXEL_FORMAT_RGB_888 || vf_info->v_frame.pixel_format == PIXEL_FORMAT_BGR_888)
        size = vf_info->v_frame.height * vf_info->v_frame.width * 3;
    else if (vf_info->v_frame.pixel_format == PIXEL_FORMAT_ARGB_1555 || vf_info->v_frame.pixel_format == PIXEL_FORMAT_ABGR_1555)
        size = vf_info->v_frame.height * vf_info->v_frame.width * 2;
    else if (vf_info->v_frame.pixel_format == PIXEL_FORMAT_YVU_PLANAR_420)
        size = vf_info->v_frame.height * vf_info->v_frame.width * 3 / 2;

    size = size + 4096;         // 强制4K ,后边得删了

    printf("vb block size is %x \n", size);

    handle = kd_mpi_vb_get_block(g_pool_id, size, NULL);
    if (handle == VB_INVALID_HANDLE)
    {
        printf("%s get vb block error\n", __func__);
        return K_FAILED;
    }

    phys_addr = kd_mpi_vb_handle_to_phyaddr(handle);
    if (phys_addr == 0)
    {
        printf("%s get phys addr error\n", __func__);
        return K_FAILED;
    }

    virt_addr = (k_u32 *)kd_mpi_sys_mmap(phys_addr, size);
    // virt_addr = (k_u32 *)kd_mpi_sys_mmap_cached(phys_addr, size);

    if (virt_addr == NULL)
    {
        printf("%s mmap error\n", __func__);
        return K_FAILED;
    }

    vf_info->mod_id = K_ID_VO;
    vf_info->pool_id = g_pool_id;
    vf_info->v_frame.phys_addr[0] = phys_addr;
    if (vf_info->v_frame.pixel_format == PIXEL_FORMAT_YVU_PLANAR_420)
        vf_info->v_frame.phys_addr[1] = phys_addr + (vf_info->v_frame.height * vf_info->v_frame.stride[0]);
    *pic_vaddr = virt_addr;

    printf("phys_addr is %lx g_pool_id is %d \n", phys_addr, g_pool_id);

    return handle;
}

k_u32 vo_creat_osd_test(k_vo_osd osd, osd_info *info)
{
    k_vo_video_osd_attr attr;

    // set attr
    attr.global_alptha = info->global_alptha;

    if (info->format == PIXEL_FORMAT_ABGR_8888 || info->format == PIXEL_FORMAT_ARGB_8888)
    {
        info->size = info->act_size.width  * info->act_size.height * 4;
        info->stride  = info->act_size.width * 4 / 8;
    }
    else if (info->format == PIXEL_FORMAT_RGB_565 || info->format == PIXEL_FORMAT_BGR_565)
    {
        info->size = info->act_size.width  * info->act_size.height * 2;
        info->stride  = info->act_size.width * 2 / 8;
    }
    else if (info->format == PIXEL_FORMAT_RGB_888 || info->format == PIXEL_FORMAT_BGR_888)
    {
        info->size = info->act_size.width  * info->act_size.height * 3;
        info->stride  = info->act_size.width * 3 / 8;
    }
    else if(info->format == PIXEL_FORMAT_ARGB_4444 || info->format == PIXEL_FORMAT_ABGR_4444)
    {
        info->size = info->act_size.width  * info->act_size.height * 2;
        info->stride  = info->act_size.width * 2 / 8;
    }
    else if(info->format == PIXEL_FORMAT_ARGB_1555 || info->format == PIXEL_FORMAT_ABGR_1555)
    {
        info->size = info->act_size.width  * info->act_size.height * 2;
        info->stride  = info->act_size.width * 2 / 8;
    }
    else
    {
        printf("set osd pixel format failed  \n");
    }

    attr.stride = info->stride;
    attr.pixel_format = info->format;
    attr.display_rect = info->offset;
    attr.img_size = info->act_size;
    kd_mpi_vo_set_video_osd_attr(osd, &attr);

    kd_mpi_vo_osd_enable(osd);

    return 0;
}

void sample_vicap_install_osd(void)
{
    osd_info osd;

    osd.act_size.width = osd_width ;
    osd.act_size.height = osd_height;
    osd.offset.x = 0;
    osd.offset.y = 0;
    osd.global_alptha = 0xff;
    // osd.global_alptha = 0x32;
    osd.format = PIXEL_FORMAT_ARGB_8888;//PIXEL_FORMAT_ARGB_4444; //PIXEL_FORMAT_ARGB_1555;//PIXEL_FORMAT_ARGB_8888;

    vo_creat_osd_test(osd_id, &osd);
}

void vo_osd_release_block(void)
{
    if(vicap_install_osd == 1)
    {
        kd_mpi_vo_osd_disable(osd_id);
        kd_mpi_vb_release_block(block);
    }
    
}

static k_s32 sample_connector_init(void)
{
    k_u32 ret = 0;
    k_s32 connector_fd;
#if defined(CONFIG_BOARD_K230_CANMV)
    k_connector_type connector_type = LT9611_MIPI_4LAN_1920X1080_30FPS;// HX8377_V2_MIPI_4LAN_1080X1920_30FPS;
#else
    k_connector_type connector_type = HX8377_V2_MIPI_4LAN_1080X1920_30FPS;
#endif
    k_connector_info connector_info;

    memset(&connector_info, 0, sizeof(k_connector_info));

    //connector get sensor info
    ret = kd_mpi_get_connector_info(connector_type, &connector_info);
    if (ret) {
        printf("sample_vicap, the sensor type not supported!\n");
        return ret;
    }

    connector_fd = kd_mpi_connector_open(connector_info.connector_name);
    if (connector_fd < 0) {
        printf("%s, connector open failed.\n", __func__);
        return K_ERR_VO_NOTREADY;
    }

    // set connect power
    kd_mpi_connector_power_set(connector_fd, K_TRUE);
    // connector init
    kd_mpi_connector_init(connector_fd, connector_info);

    return 0;
}

static k_s32 vo_layer_vdss_bind_vo_config(void)
{
    layer_info info;

    k_vo_layer chn_id = K_VO_LAYER1;

    memset(&info, 0, sizeof(info));

    sample_connector_init();

    // config lyaer
    info.act_size.width = ISP_CHN0_WIDTH;//ISP_CHN0_HEIGHT;//1080;//640;//1080;
    info.act_size.height = ISP_CHN0_HEIGHT;//ISP_CHN0_WIDTH;//1920;//480;//1920;
    info.format = PIXEL_FORMAT_YVU_PLANAR_420;
    info.func = 0;//K_ROTATION_180;////K_ROTATION_90;
    info.global_alptha = 0xff;
    info.offset.x = 0;//(1080-w)/2,
    info.offset.y = 0;//(1920-h)/2;
    vo_creat_layer_test(chn_id, &info);

    if(vicap_install_osd == 1)
        sample_vicap_install_osd();

    //exit ;
    return 0;
}

static void sample_vicap_bind_vo(k_mpp_chn vicap_mpp_chn, k_mpp_chn vo_mpp_chn)
{
    k_s32 ret;

    ret = kd_mpi_sys_bind(&vicap_mpp_chn, &vo_mpp_chn);
    if (ret) {
        printf("kd_mpi_sys_unbind failed:0x%x\n", ret);
    }

    return;
}

static void sample_vicap_unbind_vo(k_mpp_chn vicap_mpp_chn, k_mpp_chn vo_mpp_chn)
{
    k_s32 ret;

    ret = kd_mpi_sys_unbind(&vicap_mpp_chn, &vo_mpp_chn);
    if (ret) {
        printf("kd_mpi_sys_unbind failed:0x%x\n", ret);
    }

    return;
}

int vivcap_start()
{
    k_s32 ret = 0;

    k_u32 pool_id;
    k_vb_pool_config pool_config;

    printf("sample_vicap ...\n");

#if defined(CONFIG_BOARD_K230_CANMV)
    sensor_type = OV_OV5647_MIPI_CSI0_1920X1080_30FPS_10BIT_LINEAR;
    kd_mpi_vicap_set_mclk(VICAP_MCLK0, VICAP_PLL0_CLK_DIV4, 16, 1);
#else
    sensor_type = IMX335_MIPI_2LANE_RAW12_2592X1944_30FPS_LINEAR;
#endif
    vicap_dev = VICAP_DEV_ID_0;

    memset(&config, 0, sizeof(config));
    config.max_pool_cnt = 64;
    //VB for YUV420SP output
    config.comm_pool[0].blk_cnt = 5;
    config.comm_pool[0].mode = VB_REMAP_MODE_NOCACHE;
    config.comm_pool[0].blk_size = VICAP_ALIGN_UP((ISP_CHN0_WIDTH * ISP_CHN0_HEIGHT * 3 / 2), VICAP_ALIGN_1K);
   
    //VB for RGB888 output
    config.comm_pool[1].blk_cnt = 5;
    config.comm_pool[1].mode = VB_REMAP_MODE_NOCACHE;
    config.comm_pool[1].blk_size = VICAP_ALIGN_UP((SENSOR_HEIGHT * SENSOR_WIDTH * 3 ), VICAP_ALIGN_1K);

    ret = kd_mpi_vb_set_config(&config);
    if (ret) {
        printf("vb_set_config failed ret:%d\n", ret);
        return ret;
    }

    k_vb_supplement_config supplement_config;
    memset(&supplement_config, 0, sizeof(supplement_config));
    supplement_config.supplement_config |= VB_SUPPLEMENT_JPEG_MASK;

    ret = kd_mpi_vb_set_supplement_config(&supplement_config);
    if (ret) {
        printf("vb_set_supplement_config failed ret:%d\n", ret);
        return ret;
    }

    ret = kd_mpi_vb_init();
    if (ret) {
        printf("vb_init failed ret:%d\n", ret);
        return ret;
    }
    printf("sample_vicap ...kd_mpi_vicap_get_sensor_info\n");

    // dwc_dsi_init();
    vo_layer_vdss_bind_vo_config();

    if(vicap_install_osd == 1)
    {
        memset(&pool_config, 0, sizeof(pool_config));
        pool_config.blk_size = VICAP_ALIGN_UP((osd_width * osd_height * 4 * 2), VICAP_ALIGN_1K);
        pool_config.blk_cnt = 4;
        pool_config.mode = VB_REMAP_MODE_NOCACHE;
        pool_id = kd_mpi_vb_create_pool(&pool_config);      // osd0 - 3 argb 320 x 240
        g_pool_id = pool_id;

        printf("--------aa--------------g_pool_id is %d pool_id is %d \n",g_pool_id, pool_id);
    }

    memset(&sensor_info, 0, sizeof(k_vicap_sensor_info));
    ret = kd_mpi_vicap_get_sensor_info(sensor_type, &sensor_info);
    if (ret) {
        printf("sample_vicap, the sensor type not supported!\n");
        return ret;
    }

    memset(&dev_attr, 0, sizeof(k_vicap_dev_attr));
    dev_attr.acq_win.h_start = 0;
    dev_attr.acq_win.v_start = 0;
#if defined (CONFIG_BOARD_K230_CANMV)
    dev_attr.acq_win.width = ISP_CHN0_WIDTH;
    dev_attr.acq_win.height = ISP_CHN0_HEIGHT;
#else
    dev_attr.acq_win.width = 2592;//SENSOR_HEIGHT;
    dev_attr.acq_win.height = 1944;//SENSOR_WIDTH;
#endif
    dev_attr.mode = VICAP_WORK_ONLINE_MODE;

    dev_attr.pipe_ctrl.data = 0xFFFFFFFF;
    dev_attr.pipe_ctrl.bits.af_enable = 0;
    dev_attr.pipe_ctrl.bits.ahdr_enable = 0;


    dev_attr.cpature_frame = 0;
    memcpy(&dev_attr.sensor_info, &sensor_info, sizeof(k_vicap_sensor_info));

    ret = kd_mpi_vicap_set_dev_attr(vicap_dev, dev_attr);
    if (ret) {
        printf("sample_vicap, kd_mpi_vicap_set_dev_attr failed.\n");
        return ret;
    }

    memset(&chn_attr, 0, sizeof(k_vicap_chn_attr));

    //set chn0 output yuv420sp
    chn_attr.out_win.h_start = 0;
    chn_attr.out_win.v_start = 0;
    chn_attr.out_win.width = ISP_CHN0_WIDTH;
    chn_attr.out_win.height = ISP_CHN0_HEIGHT;


#if defined(CONFIG_BOARD_K230_CANMV)
    chn_attr.crop_win = dev_attr.acq_win;
#else
    // chn_attr.crop_win = dev_attr.acq_win;
    chn_attr.crop_win.h_start = 768;
    chn_attr.crop_win.v_start = 16;
    chn_attr.crop_win.width = ISP_CHN0_WIDTH;
    chn_attr.crop_win.height = ISP_CHN0_HEIGHT;
#endif

    chn_attr.scale_win = chn_attr.out_win;
    chn_attr.crop_enable = K_FALSE;
    chn_attr.scale_enable = K_FALSE;
    // chn_attr.dw_enable = K_FALSE;
    chn_attr.chn_enable = K_TRUE;
    chn_attr.pix_format = PIXEL_FORMAT_YVU_PLANAR_420;
    chn_attr.buffer_num = VICAP_MAX_FRAME_COUNT;//at least 3 buffers for isp
    chn_attr.buffer_size = config.comm_pool[0].blk_size;
    vicap_chn = VICAP_CHN_ID_0;

    printf("sample_vicap ...kd_mpi_vicap_set_chn_attr, buffer_size[%d]\n", chn_attr.buffer_size);
    ret = kd_mpi_vicap_set_chn_attr(vicap_dev, vicap_chn, chn_attr);
    if (ret) {
        printf("sample_vicap, kd_mpi_vicap_set_chn_attr failed.\n");
        return ret;
    }

    //bind vicap chn 0 to vo
    vicap_mpp_chn.mod_id = K_ID_VI;
    vicap_mpp_chn.dev_id = vicap_dev;
    vicap_mpp_chn.chn_id = vicap_chn;

    vo_mpp_chn.mod_id = K_ID_VO;
    vo_mpp_chn.dev_id = K_VO_DISPLAY_DEV_ID;
    vo_mpp_chn.chn_id = K_VO_DISPLAY_CHN_ID1;

    sample_vicap_bind_vo(vicap_mpp_chn, vo_mpp_chn);
    printf("sample_vicap ...dwc_dsi_init\n");

    //set chn1 output rgb888p
    chn_attr.out_win.h_start = 0;
    chn_attr.out_win.v_start = 0;
    chn_attr.out_win.width = SENSOR_WIDTH ;
    chn_attr.out_win.height = SENSOR_HEIGHT;
    // chn_attr.crop_win = dev_attr.acq_win;

#if defined(CONFIG_BOARD_K230_CANMV)
    chn_attr.crop_win = dev_attr.acq_win;
#else   
    chn_attr.crop_win.h_start = 768;
    chn_attr.crop_win.v_start = 16;
    chn_attr.crop_win.width = ISP_CHN0_WIDTH;
    chn_attr.crop_win.height = ISP_CHN0_HEIGHT;
#endif

    chn_attr.scale_win = chn_attr.out_win;
    chn_attr.crop_enable = K_FALSE;
    chn_attr.scale_enable = K_FALSE;
    // chn_attr.dw_enable = K_FALSE;
    chn_attr.chn_enable = K_TRUE;
    chn_attr.pix_format = PIXEL_FORMAT_BGR_888_PLANAR;
    chn_attr.buffer_num = VICAP_MAX_FRAME_COUNT;//at least 3 buffers for isp
    chn_attr.buffer_size = config.comm_pool[1].blk_size;

    printf("sample_vicap ...kd_mpi_vicap_set_chn_attr, buffer_size[%d]\n", chn_attr.buffer_size);
    ret = kd_mpi_vicap_set_chn_attr(vicap_dev, VICAP_CHN_ID_1, chn_attr);
    if (ret) {
        printf("sample_vicap, kd_mpi_vicap_set_chn_attr failed.\n");
        return ret;
    }

    printf("sample_vicap ...kd_mpi_vicap_init\n");
    ret = kd_mpi_vicap_init(vicap_dev);
    if (ret) {
        printf("sample_vicap, kd_mpi_vicap_init failed.\n");
        // goto err_exit;
    }

    printf("sample_vicap ...kd_mpi_vicap_start_stream\n");
    ret = kd_mpi_vicap_start_stream(vicap_dev);
    if (ret) {
        printf("sample_vicap, kd_mpi_vicap_init failed.\n");
        // goto err_exit;
    }

    return ret;
}

int vivcap_stop()
{
    printf("sample_vicap ...kd_mpi_vicap_stop_stream\n");
    int ret = kd_mpi_vicap_stop_stream(vicap_dev);
    if (ret) {
        printf("sample_vicap, kd_mpi_vicap_init failed.\n");
        return ret;
    }

    ret = kd_mpi_vicap_deinit(vicap_dev);
    if (ret) {
        printf("sample_vicap, kd_mpi_vicap_deinit failed.\n");
        return ret;
    }

    kd_mpi_vo_disable_video_layer(K_VO_LAYER1);

    vicap_mpp_chn.mod_id = K_ID_VI;
    vicap_mpp_chn.dev_id = vicap_dev;
    vicap_mpp_chn.chn_id = vicap_chn;

    vo_mpp_chn.mod_id = K_ID_VO;
    vo_mpp_chn.dev_id = K_VO_DISPLAY_DEV_ID;
    vo_mpp_chn.chn_id = K_VO_DISPLAY_CHN_ID1;

    sample_vicap_unbind_vo(vicap_mpp_chn, vo_mpp_chn);

    /*Allow one frame time for the VO to release the VB block*/
    k_u32 display_ms = 1000 / 33;
    usleep(1000 * display_ms);

    ret = kd_mpi_vb_exit();
    if (ret) {
        printf("sample_vicap, kd_mpi_vb_exit failed.\n");
        return ret;
    }

    return 0;
}

void yuv_rotate_90(char *des, char *src,int width,int height)
{
    int n = 0;
    int hw = width>>1;
    int hh = height>>1;
    int size = width * height;
    int hsize = size>>2;

    int pos = 0;

    for(int i = width-1;i >= 0;i--)
    {
        pos = 0;
        for(int j= 0;j < height;j++)
        {
            des[n++]= src[pos+i];
            pos += width;
        }
    }

}
/****************************************************************************/

main.cc

/* Copyright (c) 2023, Canaan Bright Sight Co., Ltd
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <iostream>
#include <thread>
#include <map>
#include <nncase/runtime/runtime_tensor.h>
#include <nncase/runtime/interpreter.h>
#include <nncase/runtime/runtime_op_utility.h>
#include <opencv2/highgui.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>

#include "vi_vo.h"

using namespace nncase;
using namespace nncase::runtime;

using cv::Mat;
using std::cerr;
using std::cout;
using std::endl;
using namespace std;

auto cache = cv::Mat::zeros(1, 1, CV_32FC1);
/**
 * @brief 分类结果结构
 */
typedef struct cls_res
{
    float score;//分类分数
    string label;//分类标签结果
}cls_res;

std::atomic<bool> isp_stop(false);

void video_proc_cls(char *argv[])
{
    
    /***************************fixed:无需修改***********************************/
    vivcap_start();

    // osd set
    k_video_frame_info vf_info;
    void *pic_vaddr = NULL;       

    memset(&vf_info, 0, sizeof(vf_info));

    vf_info.v_frame.width = osd_width;
    vf_info.v_frame.height = osd_height;
    vf_info.v_frame.stride[0] = osd_width;
    vf_info.v_frame.pixel_format = PIXEL_FORMAT_ARGB_8888;
    block = vo_insert_frame(&vf_info, &pic_vaddr);

    // alloc memory for sensor
    size_t paddr = 0;
    void *vaddr = nullptr;
    size_t size = SENSOR_CHANNEL * SENSOR_HEIGHT * SENSOR_WIDTH;
    int ret = kd_mpi_sys_mmz_alloc_cached(&paddr, &vaddr, "allocate", "anonymous", size);
    if (ret)
    {
        std::cerr << "physical_memory_block::allocate failed: ret = " << ret << ", errno = " << strerror(errno) << std::endl;
        std::abort();
    }
    /*****************************************************************************/ 

    string kmodel_path = argv[1];
    cout<<"kmodel_path : "<<kmodel_path<<endl;
    float cls_thresh=0.5;

    /***************************fixed:无需修改***********************************/
    // 我们已经把相关实现封装到ai_base.cc,这里只是为了介绍起来比较简单
    interpreter kmodel_interp;        
    // load model
    std::ifstream ifs(kmodel_path, std::ios::binary);
    kmodel_interp.load_model(ifs).expect("Invalid kmodel");

    // inputs init
    for (size_t i = 0; i < kmodel_interp.inputs_size(); i++)
    {
        auto desc = kmodel_interp.input_desc(i);
        auto shape = kmodel_interp.input_shape(i);
        auto tensor = host_runtime_tensor::create(desc.datatype, shape, hrt::pool_shared).expect("cannot create input tensor");
        kmodel_interp.input_tensor(i, tensor).expect("cannot set input tensor");
    } 
    auto shape0 = kmodel_interp.input_shape(0);      //nhwc
    int kmodel_input_height = shape0[1];
    int kmodel_input_width = shape0[2];

    // outputs init
    for (size_t i = 0; i < kmodel_interp.outputs_size(); i++)
    {
        auto desc = kmodel_interp.output_desc(i);
        auto shape = kmodel_interp.output_shape(i);
        auto tensor = host_runtime_tensor::create(desc.datatype, shape, hrt::pool_shared).expect("cannot create output tensor");
        kmodel_interp.output_tensor(i, tensor).expect("cannot set output tensor");
    }
    /*****************************************************************************/ 

    vector<cls_res> results;
    std::vector<std::string> labels = {"bocai","changqiezi","huluobo","xihongshi","xilanhua"};
    
    while (!isp_stop)
    {
        cv::Mat ori_img;
        //sensor to cv::Mat
        {
            /***************************fixed:无需修改***********************************/
            //从摄像头读取一帧图像
            memset(&dump_info, 0 , sizeof(k_video_frame_info));
            ret = kd_mpi_vicap_dump_frame(vicap_dev, VICAP_CHN_ID_1, VICAP_DUMP_YUV, &dump_info, 1000);
            if (ret) {
                printf("sample_vicap...kd_mpi_vicap_dump_frame failed.\n");
                continue;
            }

            //将摄像头当前帧对应DDR地址映射到当前系统进行访问
            auto vbvaddr = kd_mpi_sys_mmap_cached(dump_info.v_frame.phys_addr[0], size);
            memcpy(vaddr, (void *)vbvaddr, SENSOR_HEIGHT * SENSOR_WIDTH * 3); 
            kd_mpi_sys_munmap(vbvaddr, size);
                /*****************************************************************************/ 
            
            //将摄像头数据转换为为cv::Mat,sensor(rgb,chw)->cv::Mat(bgr,hwc)
            cv::Mat image_r = cv::Mat(SENSOR_HEIGHT,SENSOR_WIDTH, CV_8UC1, vaddr);
            cv::Mat image_g = cv::Mat(SENSOR_HEIGHT,SENSOR_WIDTH, CV_8UC1, vaddr+SENSOR_HEIGHT*SENSOR_WIDTH);
            cv::Mat image_b = cv::Mat(SENSOR_HEIGHT,SENSOR_WIDTH, CV_8UC1, vaddr+2*SENSOR_HEIGHT*SENSOR_WIDTH);
            std::vector<cv::Mat> color_vec(3);
            color_vec.clear();
            color_vec.push_back(image_b);
            color_vec.push_back(image_g);
            color_vec.push_back(image_r);
            cv::merge(color_vec, ori_img);
        }

        /***************************unfixed:不同AI Demo可能需要修改******************/
        // pre_process
        cv::Mat pre_process_img;
        {
            cv::Mat rgb_img;
            cv::cvtColor(ori_img, rgb_img, cv::COLOR_BGR2RGB);
            cv::resize(rgb_img, pre_process_img, cv::Size(kmodel_input_width, kmodel_input_height), cv::INTER_LINEAR);
        }
        /*****************************************************************************/  

        /***************************fixed:无需修改***********************************/
        // set kmodel input
        {
            runtime_tensor tensor0 = kmodel_interp.input_tensor(0).expect("cannot get input tensor");
            auto in_buf = tensor0.impl()->to_host().unwrap()->buffer().as_host().unwrap().map(map_access_::map_write).unwrap().buffer();
            memcpy(reinterpret_cast<unsigned char *>(in_buf.data()), pre_process_img.data,sizeof(uint8_t)* kmodel_input_height * kmodel_input_width * 3);
            hrt::sync(tensor0, sync_op_t::sync_write_back, true).expect("sync write_back failed");
        }
        

        // kmodel run
        kmodel_interp.run().expect("error occurred in running model");

        // get kmodel output
        vector<float *> k_outputs;
        {
            for (int i = 0; i < kmodel_interp.outputs_size(); i++)
            {
                auto out = kmodel_interp.output_tensor(i).expect("cannot get output tensor");
                auto buf = out.impl()->to_host().unwrap()->buffer().as_host().unwrap().map(map_access_::map_read).unwrap().buffer();
                float *p_out = reinterpret_cast<float *>(buf.data());
                k_outputs.push_back(p_out);
            }
        }
        /***************************fixed:无需修改***********************************/

        /***************************unfixed:不同AI Demo可能需要修改******************/
        //post process
        results.clear();
        {
            
            float* output0 = k_outputs[0];
            float sum = 0.0;
            for (int i = 0; i < labels.size(); i++){
                sum += exp(output0[i]);
            }
            
            int max_index;
            for (int i = 0; i < labels.size(); i++)
            {
                output0[i] = exp(output0[i]) / sum;
            }
            max_index = std::max_element(output0,output0+labels.size()) - output0; 
            cls_res b;
            if (output0[max_index] >= cls_thresh)
            {
                b.label = labels[max_index];
                b.score = output0[max_index];
                results.push_back(b);
            }
        }
        /*****************************************************************************/    

        // draw result to vo
        {
            {
                cv::Mat osd_frame(osd_height, osd_width, CV_8UC4, cv::Scalar(0, 0, 0, 0));
                {
         /***************************unfixed:不同AI Demo可能需要修改******************/
                    //draw cls
                    double fontsize = (osd_frame.cols * osd_frame.rows * 1.0) / (1100 * 1200);
                    for(int i = 0; i < results.size(); i++)
                    {   
                        std::string text = "class: " + results[i].label + ", score: " + std::to_string(round(results[i].score * 100) / 100.0).substr(0, 4);

                        cv::putText(osd_frame, text, cv::Point(1, 40), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(255, 255, 255, 0), 2);

                        std::cout << text << std::endl;
                    }
                    /*****************************************************************************/
                }

           /***************************fixed:无需修改***********************************/
                memcpy(pic_vaddr, osd_frame.data, osd_width * osd_height * 4);
            }

            // insert osd to vo
            {
                kd_mpi_vo_chn_insert_frame(osd_id+3, &vf_info);  //K_VO_OSD0
                printf("kd_mpi_vo_chn_insert_frame success \n");
            }
            
        }
        
        {
            // 释放sensor当前帧
            ret = kd_mpi_vicap_dump_release(vicap_dev, VICAP_CHN_ID_1, &dump_info);
            if (ret) {
                printf("sample_vicap...kd_mpi_vicap_dump_release failed.\n");
            }
        }
        /*****************************************************************************/ 
    }
    
    /***************************fixed:无需修改***********************************/
    vo_osd_release_block();
    vivcap_stop();

    // free memory
    ret = kd_mpi_sys_mmz_free(paddr, vaddr);
    if (ret)
    {
        std::cerr << "free failed: ret = " << ret << ", errno = " << strerror(errno) << std::endl;
        std::abort();
    }
    /*****************************************************************************/ 
}

int main(int argc, char *argv[])
{
     std::cout << "case " << argv[0] << " built at " << __DATE__ << " " << __TIME__ << std::endl;
    if (argc != 2)
    {
        cout << "模型推理时传参说明:"
         << "<kmodel_path>" << endl
         << "Options:" << endl
         << "  kmodel_path     Kmodel的路径\n"
         << "\n"
         << endl;
        return -1;
    }

    /***************************fixed:无需修改***********************************/
    std::thread thread_isp(video_proc_cls, argv);
    while (getchar() != 'q')
    {
        usleep(10000);
    }

    isp_stop = true;
    thread_isp.join();
    /*****************************************************************************/ 
    return 0;
}

5.2 基于ulab(MicroPython)的AI推理流程#

基于ulab(MicroPython)的K230 AI推理,简要介绍了使用MicroPython语言实现的视频采集,图像预处理(ulab),模型推理、后处理(ulab)、显示等过程。

5.2.1 视频采集#

视频采集:(视频输入,VI)与摄像头相关,本小节简要介绍基于Micropython的摄像头设置、摄像头启动、从摄像头中获取一帧数据、摄像头停止的整体流程;详细介绍见K230_CanMV_Camera模块API手册.mdcamera采集示例K230_CanMV_Media模块API手册.mdmedia使用示例

创建摄像头(sensor)输出缓存(VB):已经封装到c++底层实现中,在Micropython实现时无需关心。

  • 设置的sensor两路输出;

  • 一路输出用于显示,输出大小设置1080p,图像格式为PIXEL_FORMAT_YVU_PLANAR_420,直接绑定到vo;

  • 另一路输出用于AI计算,输出大小(224,224),图像格式为PIXEL_FORMAT_RGB_888_PLANAR;

from media.camera import *               #摄像头模块

#***************************unfixed:不同AI Demo可能需要修改******************

#显示分辨率
DISPLAY_WIDTH = ALIGN_UP(1920, 16)
DISPLAY_HEIGHT = 1080

#AI分辨率
OUT_RGB888P_WIDTH = ALIGN_UP(224, 16)
OUT_RGB888P_HEIGH = 224
#*****************************************************************************

#***************************fixed:无需修改***********************************
#for camera
def camera_init(dev_id):
    # 设置摄像头类型
    camera.sensor_init(dev_id, CAM_DEFAULT_SENSOR)

     # (1)设置显示输出
    # 设置指定设备id的chn0的输出宽高
    camera.set_outsize(dev_id, CAM_CHN_ID_0, DISPLAY_WIDTH, DISPLAY_HEIGHT)
    # 设置指定设备id的chn0的输出格式为yuv420sp
    camera.set_outfmt(dev_id, CAM_CHN_ID_0, PIXEL_FORMAT_YUV_SEMIPLANAR_420)
    
    # (2)设置AI输出
    # 设置指定设备id的chn2的输出宽高
    camera.set_outsize(dev_id, CAM_CHN_ID_2, OUT_RGB888P_WIDTH, OUT_RGB888P_HEIGH)
    # 设置指定设备id的chn2的输出格式为rgb88planar
    camera.set_outfmt(dev_id, CAM_CHN_ID_2, PIXEL_FORMAT_RGB_888_PLANAR)
    
def camera_start(dev_id):
    # 启动sensor
    camera.start_stream(dev_id)

def camera_read(dev_id):
    # 读取指定设备chn2的一帧图像,即获取一帧AI原图
    with ScopedTiming("camera_read",debug_mode >0):
        rgb888p_img = camera.capture_image(dev_id, CAM_CHN_ID_2)
    return rgb888p_img

def camera_release_image(dev_id,rgb888p_img):
    # 释放指定设备chn2一帧图像
    with ScopedTiming("camera_release_image",debug_mode >0):
        camera.release_image(dev_id, CAM_CHN_ID_2, rgb888p_img)

def camera_stop(dev_id):
    # 释放sensor
    camera.stop_stream(dev_id)
#***************************************************************************** 

将摄像头通道0绑定到显示:

#***************************fixed:无需修改***********************************
# for media
def media_init():
    # meida初始化
    ......
    # 将摄像头通道0绑定到显示
    global media_source, media_sink
    media_source = media_device(CAMERA_MOD_ID, CAM_DEV_ID_0, CAM_CHN_ID_0)
    media_sink = media_device(DISPLAY_MOD_ID, DISPLAY_DEV_ID, DISPLAY_CHN_VIDEO1)
    media.create_link(media_source, media_sink)
    ......
#***************************************************************************** 

使用示例

from media.camera import *
import os,sys                                

......
#***************************fixed:无需修改***********************************
# 初始化摄像头
camera_init(CAM_DEV_ID_0)
......
try:
    media_init()
    # 启动摄像头
    camera_start(CAM_DEV_ID_0)

    while  True:
        os.exitpoint()
        with ScopedTiming("total",debug_mode > 0):
            # 从摄像头通道2拿取一帧图像,用于喂给AI
            rgb888p_img = camera_read(CAM_DEV_ID_0)
             
            ......
            # 释放当前帧
            camera_release_image(CAM_DEV_ID_0,rgb888p_img)
            ......
except KeyboardInterrupt as e:
    print("user stop: ", e)
except BaseException as e:
    sys.print_exception(e)
finally:
    camera_stop(CAM_DEV_ID_0)
    ......
    media_deinit()
#*****************************************************************************

5.2.2 预处理#

from media.camera import *
import os,sys                                

......
try:
    ......
    while  True:
        os.exitpoint()
        with ScopedTiming("total",debug_mode > 0):
            # 从摄像头通道2拿取一帧图像,用于喂给AI
            rgb888p_img = camera_read(CAM_DEV_ID_0)
            if rgb888p_img.format() == image.RGBP888:
                #******************unfixed:不同AI Demo可能需要修改******************
                # rgb888(uint8,chw,rgb)->kmodel input(uint8,hwc,rgb)
                # pre_process : chw -> hwc
                ori_img_numpy = rgb888p_img.to_numpy_ref()
                ori_img_copy = ori_img_numpy.copy()
                shape=ori_img_copy.shape
                img_tmp = ori_img_copy.reshape((shape[0], shape[1] * shape[2]))
                img_tmp_trans = img_tmp.transpose()
                img_res=img_tmp_trans.copy()
                img_hwc=img_res.reshape((1,shape[1],shape[2],shape[0]))
                input_tensor = nn.from_numpy(img_hwc)
                #********************************************************************
                # set kmodel input
                kpu.set_input_tensor(0, input_tensor)
            ......
            # 释放当前帧
            camera_release_image(CAM_DEV_ID_0,rgb888p_img)
            ......
except KeyboardInterrupt as e:
    print("user stop: ", e)
except BaseException as e:
    sys.print_exception(e)
finally:
    ......

:对于该分类模型来说,需要先拿到原图,再将原图resize到(224,224)大小,之后再经过其它预处理后喂给模型;但是由于对于micropython来说,resize不支持,故我们将喂给AI的摄像头数据分辨率设置为(224,224);当然除了micropython,我们在底层封装了可以调用的resize操作,后续会进行介绍。

5.2.3 模型推理#

from media.camera import *
import os,sys                                

......
try:
    ......
    while True:
        os.exitpoint()
        with ScopedTiming("total",debug_mode > 0):
            # 从摄像头通道2拿取一帧图像,用于喂给AI
            rgb888p_img = camera_read(CAM_DEV_ID_0)
            if rgb888p_img.format() == image.RGBP888:
                ......
                # pre_process
                #************************fixed:无需修改*****************************
                # kmodel run
                kpu.run()

                # get output
                results = []
                for i in range(kpu.outputs_size()):
                    output_tensor = kpu.get_output_tensor(i)
                    result = output_tensor.to_numpy()
                    del output_tensor
                    results.append(result)
                #********************************************************************
            ......
            # 释放当前帧
            camera_release_image(CAM_DEV_ID_0,rgb888p_img)
            ......
except KeyboardInterrupt as e:
    print("user stop: ", e)
except BaseException as e:
    sys.print_exception(e)
finally:
    ......

:kmodel模块部分,kmodel的input_tensor、output_tensor都是mmz申请的内存,需要del手动释放

5.2.4 后处理#

对模型结果进行后处理,并结果放到results中。

from media.camera import *
import os,sys                                

......
try:
    ......
    while  True:
        os.exitpoint()
        with ScopedTiming("total",debug_mode > 0):
            # 从摄像头通道2拿取一帧图像,用于喂给AI
            rgb888p_img = camera_read(CAM_DEV_ID_0)
            if rgb888p_img.format() == image.RGBP888:
                ......
                # pre_process
                # kmodel run
                kpu.run()

                # get output
                results = []
                ......
                #******************unfixed:不同AI Demo可能需要修改******************
                # post_process
                softmax_res=softmax(results[0][0])
                res_idx=np.argmax(softmax_res)
                if softmax_res[res_idx]>confidence_threshold:
                    cls_idx=res_idx
                    print("classification result:")
                    print(labels[res_idx])
                    print("score",softmax_res[res_idx])
                else:
                    cls_idx=-1
                #********************************************************************
            ......
            # 释放当前帧
            camera_release_image(CAM_DEV_ID_0,rgb888p_img)
            ......
except KeyboardInterrupt as e:
    print("user stop: ", e)
except BaseException as e:
    sys.print_exception(e)
finally:
    ......

5.2.4 显示#

显示(视频输出,VO)与display相关,本小节简要介绍基于Micropython的显示设置、资源释放、显示叠加的整体流程;详细介绍参见K230_CanMV_Display模块API手册.md显示示例

  • 显示设置:设置显示大小,格式

  • 显示叠加:显示由2个图层构成,其中下边的图层(原图图层)直接显示摄像头输出,上边的图层(osd图层)用于画框、画点,写文字等。

  • 资源释放:释放显示相关资源

1. 显示设置、资源释放

global draw_img,osd_img                                     #for display

#***************************fixed:无需修改***********************************
# for display
def display_init():
    # hdmi显示初始化
    display.init(LT9611_1920X1080_30FPS)
    display.set_plane(0, 0, DISPLAY_WIDTH, DISPLAY_HEIGHT, PIXEL_FORMAT_YVU_PLANAR_420, DISPLAY_MIRROR_NONE, DISPLAY_CHN_VIDEO1)

def display_deinit():
    # 释放显示资源
    display.deinit()
#*****************************************************************************

2. 显示叠加:由于摄像头和显示的通道进行了绑定,我们无法对vo进行直接操作,因此采用叠加的方式进行显示。

原图图层:由于摄像头(vi)通道0绑定了显示(vo)的通道1;随着摄像头的启动,摄像头通道0的数据会自动流到vo的通道1。

# classification.py
#***************************fixed:无需修改***********************************
# for media
def media_init():
    # meida初始化
    ......
    # 将摄像头通道0绑定到显示
    global media_source, media_sink
    media_source = media_device(CAMERA_MOD_ID, CAM_DEV_ID_0, CAM_CHN_ID_0)
    media_sink = media_device(DISPLAY_MOD_ID, DISPLAY_DEV_ID, DISPLAY_CHN_VIDEO1)
    media.create_link(media_source, media_sink)
    ......
#*****************************************************************************  

osd图层:Image上画框、画点、写文字之后,将数据拷贝到osd_img,以进行显示。

#classification.py
global draw_img,osd_img                                     #for display
global buffer,media_source,media_sink                       #for media
#***************************fixed:无需修改***********************************
# for media
def media_init():
    # meida初始化
    ......
    global buffer, draw_img, osd_img
    # 在VB上创建显示大小的内存,用于存放osd
    buffer = media.request_buffer(4 * DISPLAY_WIDTH * DISPLAY_HEIGHT)
    # 用于画框
    draw_img = image.Image(DISPLAY_WIDTH, DISPLAY_HEIGHT, image.ARGB8888)
    # 用于拷贝画框结果,防止画框过程中发生buffer搬运
    osd_img = image.Image(DISPLAY_WIDTH, DISPLAY_HEIGHT, image.ARGB8888, poolid=buffer.pool_id, alloc=image.ALLOC_VB,
                          phyaddr=buffer.phys_addr, virtaddr=buffer.virt_addr)

    pass
#***************************************************************************** 

def display_draw(label):
    # hdmi写文字
    with ScopedTiming("display_draw",debug_mode >0):
        global draw_img,osd_img

        #******************unfixed:不同AI Demo可能需要修改******************
        if label:
        #********************************************************************
            draw_img.clear()
            #******************unfixed:不同AI Demo可能需要修改******************
            draw_img.draw_string(5,5,label,scale=5,color=(255,0,255,0))
            #********************************************************************
            draw_img.copy_to(osd_img)
            display.show_image(osd_img, 0, 0, DISPLAY_CHN_OSD3)
        else:
            draw_img.clear()
            draw_img.copy_to(osd_img)
            display.show_image(osd_img, 0, 0, DISPLAY_CHN_OSD3)   
 

使用示例

#classification.py
from media.display import *              #显示模块
from media.media import *                #软件抽象模块,主要封装媒体数据链路以及媒体缓冲区                              
......
# 摄像头初始化
camera_init(CAM_DEV_ID_0)
# 显示初始化
display_init()

try:
    media_init()
    # 启动摄像头
    camera_start(CAM_DEV_ID_0)
    while True:
        ......
        #******************unfixed:不同AI Demo可能需要修改******************
        # draw result
        if cls_idx>=0:
            display_draw(labels[res_idx])
        else:
            display_draw(None)
        #********************************************************************
        ......
        
except KeyboardInterrupt as e:
    print("user stop: ", e)
except BaseException as e:
    sys.print_exception(e)
finally:
    camera_stop(CAM_DEV_ID_0)
    display_deinit()
    ......
    media_deinit()

5.2.5 资源释放#

大核内存包括两个部分,一个是系统内存,一个是 GC 内存,前者主要用来给模型还有系统内的一些功能使用,包括摄像头和屏幕的缓冲区、kmodel及其输入输出都来自这里(mmz,用del释放);后者是解析器层面申请的内存,可以给代码的变量使用(用gc.collect()释放)。

1. gc资源释放

#classification.py
import gc
import os
 
def func_a():
    a = []
    for i in range(10000):
        a.append(i)
 
func_a()
print(gc.mem_free() / 1024 / 1024) #stack mem
print(gc.mem_alloc() / 1024 / 1024)
gc.collect()
print(gc.mem_alloc() / 1024 / 1024)

2.系统内存释放

kmodel模块部分,kmodel的input_tensor、output_tensor,及其本身都是mmz申请的内存,需要手动释放

#classification.py
del input_tensor
del output_tensor
del kpu
nn.shrink_memory_pool()       #以免漏掉某个del,遍历所有kmodel相关内存,并释放

摄像头、显示及其VB释放:

#***************************fixed:无需修改***********************************
#classification.py
def camera_release_image(dev_id,rgb888p_img):
    # 释放一帧图像
    with ScopedTiming("camera_release_image",debug_mode >0):
        camera.release_image(dev_id, CAM_CHN_ID_2, rgb888p_img)

def camera_stop(dev_id):
    # 停止camera
    camera.stop_stream(dev_id)

def display_deinit():
    # 释放显示资源
    display.deinit()
    
def media_deinit():
    # meida资源释放
    os.exitpoint(os.EXITPOINT_ENABLE_SLEEP)
    time.sleep_ms(100)
    if 'buffer' in globals():
        global buffer
        media.release_buffer(buffer)

    if 'media_source' in globals() and 'media_sink' in globals():
        global media_source, media_sink
        media.destroy_link(media_source, media_sink)

    media.buffer_deinit()
#*****************************************************************************

5.2.6 完整代码#

具体怎么操作运行,请参考第8章,这里着重介绍代码流程。

import ulab.numpy as np                  #类似python numpy操作,但也会有一些接口不同
import nncase_runtime as nn              #nncase运行模块,封装了kpu(kmodel推理)和ai2d(图片预处理加速)操作
from media.camera import *               #摄像头模块
from media.display import *              #显示模块
from media.media import *                #软件抽象模块,主要封装媒体数据链路以及媒体缓冲区
import aidemo                            #aidemo模块,封装ai demo相关后处理、画图操作
import image                             #图像模块,主要用于读取、图像绘制元素(框、点等)等操作
import time                              #时间统计
import gc                                #垃圾回收模块
import os, sys                           #操作系统接口模块

#***************************unfixed:不同AI Demo可能需要修改******************
#显示分辨率
DISPLAY_WIDTH = ALIGN_UP(1920, 16)
DISPLAY_HEIGHT = 1080

#AI分辨率
OUT_RGB888P_WIDTH = ALIGN_UP(224, 16)
OUT_RGB888P_HEIGH = 224
#*****************************************************************************

debug_mode=0

#***************************fixed:无需修改***********************************
class ScopedTiming:
    def __init__(self, info="", enable_profile=True):
        self.info = info
        self.enable_profile = enable_profile

    def __enter__(self):
        if self.enable_profile:
            self.start_time = time.time_ns()
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        if self.enable_profile:
            elapsed_time = time.time_ns() - self.start_time
            print(f"{self.info} took {elapsed_time / 1000000:.2f} ms")

global draw_img,osd_img                                     #for display
global buffer,media_source,media_sink                       #for media

# for display
def display_init():
    # hdmi显示初始化
    display.init(LT9611_1920X1080_30FPS)
    display.set_plane(0, 0, DISPLAY_WIDTH, DISPLAY_HEIGHT, PIXEL_FORMAT_YVU_PLANAR_420, DISPLAY_MIRROR_NONE, DISPLAY_CHN_VIDEO1)

def display_deinit():
    # 释放显示资源
    display.deinit()
#*****************************************************************************

def display_draw(label):
    # hdmi写文字
    with ScopedTiming("display_draw",debug_mode >0):
        global draw_img,osd_img

        #******************unfixed:不同AI Demo可能需要修改******************
        if label:
        #********************************************************************
            draw_img.clear()
            #******************unfixed:不同AI Demo可能需要修改******************
            draw_img.draw_string(5,5,label,scale=5,color=(255,0,255,0))
            #*****************************************************************
            draw_img.copy_to(osd_img)
            display.show_image(osd_img, 0, 0, DISPLAY_CHN_OSD3)
        else:
            draw_img.clear()
            draw_img.copy_to(osd_img)
            display.show_image(osd_img, 0, 0, DISPLAY_CHN_OSD3)

#***************************fixed:无需修改***********************************
#for camera
def camera_init(dev_id):
    # 设置摄像头类型
    camera.sensor_init(dev_id, CAM_DEFAULT_SENSOR)

     # (1)设置显示输出
    # 设置指定设备id的chn0的输出宽高
    camera.set_outsize(dev_id, CAM_CHN_ID_0, DISPLAY_WIDTH, DISPLAY_HEIGHT)
    # 设置指定设备id的chn0的输出格式为yuv420sp
    camera.set_outfmt(dev_id, CAM_CHN_ID_0, PIXEL_FORMAT_YUV_SEMIPLANAR_420)

    # (2)设置AI输出
    # 设置指定设备id的chn2的输出宽高
    camera.set_outsize(dev_id, CAM_CHN_ID_2, OUT_RGB888P_WIDTH, OUT_RGB888P_HEIGH)
    # 设置指定设备id的chn2的输出格式为rgb88planar
    camera.set_outfmt(dev_id, CAM_CHN_ID_2, PIXEL_FORMAT_RGB_888_PLANAR)

def camera_start(dev_id):
    # camera启动
    camera.start_stream(dev_id)

def camera_read(dev_id):
    # 读取一帧图像
    with ScopedTiming("camera_read",debug_mode >0):
        rgb888p_img = camera.capture_image(dev_id, CAM_CHN_ID_2)
        return rgb888p_img

def camera_release_image(dev_id,rgb888p_img):
    # 释放一帧图像
    with ScopedTiming("camera_release_image",debug_mode >0):
        camera.release_image(dev_id, CAM_CHN_ID_2, rgb888p_img)

def camera_stop(dev_id):
    # 停止camera
    camera.stop_stream(dev_id)

#for media
def media_init():
    # meida初始化
    config = k_vb_config()
    config.max_pool_cnt = 1
    config.comm_pool[0].blk_size = 4 * DISPLAY_WIDTH * DISPLAY_HEIGHT
    config.comm_pool[0].blk_cnt = 1
    config.comm_pool[0].mode = VB_REMAP_MODE_NOCACHE

    media.buffer_config(config)

    global media_source, media_sink
    media_source = media_device(CAMERA_MOD_ID, CAM_DEV_ID_0, CAM_CHN_ID_0)
    media_sink = media_device(DISPLAY_MOD_ID, DISPLAY_DEV_ID, DISPLAY_CHN_VIDEO1)
    media.create_link(media_source, media_sink)

    # 初始化媒体buffer
    media.buffer_init()

    global buffer, draw_img, osd_img
    buffer = media.request_buffer(4 * DISPLAY_WIDTH * DISPLAY_HEIGHT)
    # 用于画框
    draw_img = image.Image(DISPLAY_WIDTH, DISPLAY_HEIGHT, image.ARGB8888)
    # 用于拷贝画框结果,防止画框过程中发生buffer搬运
    osd_img = image.Image(DISPLAY_WIDTH, DISPLAY_HEIGHT, image.ARGB8888, poolid=buffer.pool_id, alloc=image.ALLOC_VB,
                          phyaddr=buffer.phys_addr, virtaddr=buffer.virt_addr)

def media_deinit():
    # meida资源释放
    os.exitpoint(os.EXITPOINT_ENABLE_SLEEP)
    time.sleep_ms(100)
    if 'buffer' in globals():
        global buffer
        media.release_buffer(buffer)

    if 'media_source' in globals() and 'media_sink' in globals():
        global media_source, media_sink
        media.destroy_link(media_source, media_sink)

    media.buffer_deinit()
#**************************************************************************

#***************************unfixed:不同AI Demo可能需要修改******************
# 任务后处理
def softmax(x):
    exp_x = np.exp(x - np.max(x))
    return exp_x / np.sum(exp_x)
#**************************************************************************

def classification():
    print("start")
    #***************************unfixed:不同AI Demo可能需要修改******************
    # 初始化参数
    kmodel_file = '/sdcard/k230_classify.kmodel'
    labels = ["bocai","changqiezi","huluobo","xihongshi","xilanhua"]
    confidence_threshold = 0.6
    num_classes= 5
    cls_idx=-1
    #***************************************************************************

    #***************************fixed:无需修改***********************************
    # 加载kmodel
    kpu = nn.kpu()
    kpu.load_kmodel(kmodel_file)

    # 摄像头初始化
    camera_init(CAM_DEV_ID_0)
    # 显示初始化
    display_init()

    try:
        media_init()
        # 启动摄像头
        camera_start(CAM_DEV_ID_0)

        while True:
            os.exitpoint()
            with ScopedTiming("total",debug_mode > 0):
                # 从摄像头拿取一帧数据
                rgb888p_img = camera_read(CAM_DEV_ID_0)
    #***************************************************************************
                # for rgb888planar
                if rgb888p_img.format() == image.RGBP888:
                    #******************unfixed:不同AI Demo可能需要修改*****************
                    # rgb888(uint8,chw,rgb)->kmodel input(uint8,hwc,rgb)
                    # pre_process : chw -> hwc
                    ori_img_numpy = rgb888p_img.to_numpy_ref()
                    ori_img_copy = ori_img_numpy.copy()
                    shape=ori_img_copy.shape
                    img_tmp = ori_img_copy.reshape((shape[0], shape[1] * shape[2]))
                    img_tmp_trans = img_tmp.transpose()
                    img_res=img_tmp_trans.copy()
                    img_hwc=img_res.reshape((1,shape[1],shape[2],shape[0]))
                    input_tensor = nn.from_numpy(img_hwc)
                    #*****************************************************************

                    #************************fixed:无需修改*****************************
                    # set kmodel input
                    kpu.set_input_tensor(0, input_tensor)

                    # kmodel run
                    kpu.run()

                    # get output
                    results = []
                    for i in range(kpu.outputs_size()):
                        output_tensor = kpu.get_output_tensor(i)
                        result = output_tensor.to_numpy()
                        del output_tensor
                        results.append(result)
                    #*****************************************************************

                    #******************unfixed:不同AI Demo可能需要修改******************
                    # post process
                    softmax_res=softmax(results[0][0])
                    res_idx=np.argmax(softmax_res)
                    if softmax_res[res_idx]>confidence_threshold:
                        cls_idx=res_idx
                        print("classification result:")
                        print(labels[res_idx])
                        print("score",softmax_res[res_idx])
                    else:
                        cls_idx=-1


                # draw result
                if cls_idx>=0:
                    display_draw(labels[res_idx])
                else:
                    display_draw(None)
                #******************************************************************

                del input_tensor
                #************************fixed:无需修改*****************************
                # release image
                camera_release_image(CAM_DEV_ID_0,rgb888p_img)
                # release gc
                gc.collect()
                nn.shrink_memory_pool()
                #********************************************************************
    #************************fixed:无需修改*****************************
    except KeyboardInterrupt as e:
        print("user stop: ", e)
    except BaseException as e:
        sys.print_exception(e)
    finally:
        camera_stop(CAM_DEV_ID_0)
        display_deinit()
    #******************************************************************
        del kpu                   #根据实际名称修改
    #************************fixed:无需修改*****************************
        gc.collect()
        nn.shrink_memory_pool()
        media_deinit()
    #******************************************************************
    print("end")
    return 0


if __name__=="__main__":
    #************************fixed:无需修改*****************************
    os.exitpoint(os.EXITPOINT_ENABLE)
    nn.shrink_memory_pool()
    #******************************************************************
    classification()