7. 特征值检测例程讲解#
1. 概述#
在 OpenMV 中,find_hog
、find_lines
、find_rects
、find_features
和 get_regression
是一些用于图像处理和特征检测的函数。
CanMV支持OpenMV算法,同样可以使用这些函数
2. 函数说明#
2.1 find_hog#
find_hog
函数用于在图像中检测使用 HOG (Histogram of Oriented Gradients) 特征描述符的物体。HOG 是一种常用于对象检测的特征描述方法。
语法
objects = img.find_hog(roi=None, threshold=0.5, min_size=(0, 0))
参数解释
roi: 可选参数,定义了一个感兴趣区域 (Region of Interest)。默认值为
None
,表示在整个图像上进行检测。threshold: 置信度阈值。只有置信度大于这个值的检测结果才会被返回。默认值是
0.5
。min_size: 最小检测对象的大小。指定为
(width, height)
的元组。默认值是(0, 0)
,表示没有最小大小限制。
返回值
返回一个包含检测到的对象的列表,每个对象是一个 Rect
对象,包含了对象的位置和大小。
2.2 find_lines#
find_lines
函数用于在图像中检测直线。该函数适用于寻找图像中的长直线。
语法
lines = img.find_lines(threshold=1000, theta_margin=20, rho_margin=20)
参数解释
threshold: 直线的最小长度。检测到的直线必须超过这个长度。默认值是
1000
。theta_margin: 角度的容忍度。单位是度。默认值是
20
。rho_margin: 距离的容忍度。单位是像素。默认值是
20
。
返回值
返回一个包含直线信息的列表。每条直线是一个
Line
对象,包含了直线的起点、终点、长度和角度。
2.3 find_rects#
find_rects
函数用于检测图像中的矩形区域。这个函数可以用于找到图像中的方形或矩形物体。
语法
rects = img.find_rects(threshold=2000, margin=10)
参数解释
threshold: 矩形的最小面积。默认值是
2000
。margin: 矩形检测的边距容忍度。默认值是
10
。
返回值
返回一个包含矩形信息的列表。每个矩形是一个
Rect
对象,包含矩形的坐标和大小。
2.4 find_features#
find_features
函数用于检测图像中的特征点。这些特征点可以用于图像匹配、跟踪等任务。
语法
features = img.find_features(algorithm, threshold=10)
参数解释
algorithm: 要使用的特征检测算法。常见的算法包括
image.FORBIDDEN
、image.BRIEF
等。threshold: 特征检测的阈值。默认值是
10
。
返回值
返回一个包含特征点信息的列表。每个特征点是一个
Feature
对象,包含了特征点的位置和其他信息。
2.5 get_regression#
get_regression
函数用于从图像中检测回归线,即拟合数据点的直线。通常用于标记数据的趋势或方向。
语法
line = img.get_regression(threshold=1000, min_length=10, max_distance=5)
参数解释
threshold:直线的最小长度。默认值是
1000
。min_length: 拟合线的最小长度。默认值是
10
。max_distance: 允许的数据点到回归线的最大距离。默认值是
5
。
返回值
返回一个包含回归线信息的
Line
对象,表示拟合的直线。
2.6 总结#
这些函数是 OpenMV 图像处理库中的重要工具,分别用于不同的视觉任务:
find_hog
: 基于 HOG 特征检测物体。find_lines
: 检测图像中的直线。find_rects
: 检测图像中的矩形区域。find_features
: 检测图像中的特征点。get_regression
: 检测图像中的回归线。
3. 示例#
这里只列举一个寻找线段的demo,具体demo还请查看固件自带虚拟U盘中的例程
# Find Lines Example
#
# This example shows off how to find lines in the image. For each line object
# found in the image a line object is returned which includes the line's rotation.
# Note: Line detection is done by using the Hough Transform:
# http://en.wikipedia.org/wiki/Hough_transform
# Please read about it above for more information on what `theta` and `rho` are.
# find_lines() finds infinite length lines. Use find_line_segments() to find non-infinite lines.
import time, os, gc, sys
from media.sensor import *
from media.display import *
from media.media import *
DETECT_WIDTH = ALIGN_UP(640, 16)
DETECT_HEIGHT = 480
# All line objects have a `theta()` method to get their rotation angle in degrees.
# You can filter lines based on their rotation angle.
min_degree = 0
max_degree = 179
# All lines also have `x1()`, `y1()`, `x2()`, and `y2()` methods to get their end-points
# and a `line()` method to get all the above as one 4 value tuple for `draw_line()`.
# About negative rho values:
#
# A [theta+0:-rho] tuple is the same as [theta+180:+rho].
sensor = None
def camera_init():
global sensor
# construct a Sensor object with default configure
sensor = Sensor(width=DETECT_WIDTH,height=DETECT_HEIGHT)
# sensor reset
sensor.reset()
# set hmirror
# sensor.set_hmirror(False)
# sensor vflip
# sensor.set_vflip(False)
# set chn0 output size
sensor.set_framesize(width=DETECT_WIDTH,height=DETECT_HEIGHT)
# set chn0 output format
sensor.set_pixformat(Sensor.GRAYSCALE)
# use IDE as display output
Display.init(Display.VIRT, width= DETECT_WIDTH, height = DETECT_HEIGHT,fps=100,to_ide = True)
# init media manager
MediaManager.init()
# sensor start run
sensor.run()
def camera_deinit():
global sensor
# sensor stop run
sensor.stop()
# deinit display
Display.deinit()
# sleep
os.exitpoint(os.EXITPOINT_ENABLE_SLEEP)
time.sleep_ms(100)
# release media buffer
MediaManager.deinit()
def capture_picture():
fps = time.clock()
while True:
fps.tick()
try:
os.exitpoint()
global sensor
img = sensor.snapshot()
# `threshold` controls how many lines in the image are found. Only lines with
# edge difference magnitude sums greater than `threshold` are detected...
# More about `threshold` - each pixel in the image contributes a magnitude value
# to a line. The sum of all contributions is the magintude for that line. Then
# when lines are merged their magnitudes are added togheter. Note that `threshold`
# filters out lines with low magnitudes before merging. To see the magnitude of
# un-merged lines set `theta_margin` and `rho_margin` to 0...
# `theta_margin` and `rho_margin` control merging similar lines. If two lines
# theta and rho value differences are less than the margins then they are merged.
for l in img.find_lines(threshold = 1000, theta_margin = 25, rho_margin = 25):
if (min_degree <= l.theta()) and (l.theta() <= max_degree):
img.draw_line([v for v in l.line()], color = (255, 0, 0))
print(l)
# draw result to screen
Display.show_image(img)
img = None
gc.collect()
print(fps.fps())
except KeyboardInterrupt as e:
print("user stop: ", e)
break
except BaseException as e:
print(f"Exception {e}")
break
def main():
os.exitpoint(os.EXITPOINT_ENABLE)
camera_is_init = False
try:
print("camera init")
camera_init()
camera_is_init = True
print("camera capture")
capture_picture()
except Exception as e:
print(f"Exception {e}")
finally:
if camera_is_init:
print("camera deinit")
camera_deinit()
if __name__ == "__main__":
main()
提示
具体接口定义请参考 image